Re: DiracDelta Function question
- To: mathgroup at smc.vnet.net
- Subject: [mg21100] Re: [mg21082] DiracDelta Function question
- From: Wolfgang Schadow <schadow at netcom.ca>
- Date: Fri, 17 Dec 1999 01:21:01 -0500 (EST)
- References: <199912130451.XAA16337@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
> Folks,
>
> Why is mathematica unable to evaluate:
> Integrate[DiracDelta[2 x - 1], {x, -Infinity, +Infinity}]
>
> Also interestingly:
> Integrate[DiracDelta[2 x - 2], {x, -Infinity, +Infinity}]
>
> returns (1/2)
>
Mathematica gives the correct answer in both cases. You need to
use the following relation:
delta(g(x)) = sum_i 1/g'(x_i) * delta(x-x_i)
Here x_i are the zeros of g(x), and g' is the derivative of g. Using
this formula your function can be rewritten as:
delta(2 x -1) = 1/2 delta(x - 1/2)
delta(2 x -2) = 1/2 delta(x - 1)
If you integrate over these functions the answer is 1/2.
Wolfgang
========================================================================
Wolfgang Schadow Phone: +1-604-222-1047 ext. 6453 (office)
TRIUMF +1-604-875-6066 (home)
Theory Group FAX: +1-604-222-1074
4004 Wesbrook Mall
Vancouver, B.C. V6T 2A3 email: schadow at triumf.ca
Canada www : http://www.triumf.ca/people/schadow
========================================================================
- References:
- DiracDelta Function question
- From: "Julian Francis" <acz43@dial.pipex.com>
- DiracDelta Function question