how to use Findminimum with a function defined numerically through a parameter
- To: mathgroup at smc.vnet.net
- Subject: [mg15607] how to use Findminimum with a function defined numerically through a parameter
- From: "pascal vallotton" <Pascal.Vallotton at epfl.ch>
- Date: Thu, 28 Jan 1999 04:23:35 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Dear members I have defined the following function which describes the decay of the fluorescence after a light pulse in a sample containg a dye molecule which transmits its excitation to neighbouring fluorophores, the unknown concentration of which is Conc d[t_] := Exp[(-t/tau)-eps Conc (t/tau)^(1/3) ] In this equation, tau is the average lifetime of the donor molecule in the absence of the neighbouring acceptor molecules. With my fluorimeter, I measure the fourier transform ( the phase lag introduced by the interaction of the exciting light with the sample as well as its demodulation) of the latter function at several frequencies experimentally chosen. Therefore, d(t) is linked to the phases phi[] and modulation values mod[] by the following equations. num[[i]]=NIntegrate[ d[t] Sin[2 Pi freqs[[i]] 1000000 t],{t,0,0.0000001}]; dum[[i]]=NIntegrate[ d[t] Cos[2 Pi freqs[[i]]1000000 t],{t,0,0.0000001}]; norm[[i]]=NIntegrate[Exp[-t/tau],{t,0,0.00001}]; phi[[i]]=ArcTan[num[[i]]/dum[[i]]]*360/(2 Pi); mod[[i]]=((num[[i]]/norm[[i]])^2+(dum[[i]]/norm[[i]])^2)^0.5, the point is that these funtions are numerically computed and they depend parametrically on the concentration conc through d(t). Now, to find the real concentration, I need to find it so that it best fits to the observed results for the phase and demodulation. The chisquare function is thus defined: chi[[k]]=Sum[(1/iphases[[i]])^2 (phi[[i]]-phases[[i]])^2,{i,numboffreq}] where iphases[i ] describes the experimentally measured standard deviation in the phase value, phi[i] are for each frequency the calculated value using the transform and assuming a trial concentration and phases[i] contains the measured values. Now my trouble is that the function FindMinimum[chi] refuses to give an answer. I suspect that this is because it ¨fails¨ to consider chi as a normal function of the concentration that needs to be computed numerically for each value. The current version of the program uses a loop to increase the concentration, then fits the points by a polynomial and finds its minimum. This will get highly time consuming when the system gets more complex (several lifetimes) and there must be a better way??? I have attached the complete version of the program as well as well as the experimental files that are to be analyed. Thanks for any help pascal vallotton lcppm chem dpt epfl lausanne switzerland filename="transfer.nb" (*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook = starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of = the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 5078, 117]*) (*NotebookOutlinePosition[ 5728, 140]*) (* CellTagsIndexPosition[ 5684, 136]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[{ \( (*\ this\ program\ serves\ the\ aalysis\ of\ time\ resolved\ decay\ = in\ vesicles\ *) \n \n (*\ enter\ here\ the\ relevant\ data\ *) \n (*\ file\ containing\ time\ resolved\ data\ in\ ascii\ code\ produced\ = by\ iss\ *) \nusefile = "\<C:\Temp\Trans.txt\>"; \n (*\ nombre\ de\ fr\[EAcute]quences\ mesur\[EAcute]es\ *) \n numboffreq = 7; \ \n (*\ forster\ radius\ for\ the\ donor\ acceptor\ pair\ in\ meters\ = *) \n ro = 0.0000000059\ ; \n (*\ lifetime\ of\ the\ donor\ in\ the\ absence\ of\ acceptor\ *) = \n tau = 0.000000006; \n \n (*\ initial\ concentration\ in\ natural\ units\ *) \nConc = 0; \n (*\ Wolbers\ constant\ *) \neps\ = \ 4.25409\ ; \n \n (*\ initialisation\ des\ variables\ par\ lecture\ du\ fichier\ *) = \n\ s1\ = \ OpenRead[usefile]; \ \nReadList[s1, \ String, \ 2]; \ \n S1\ = \ ReadList[s1, \ \ Number, \ \ RecordLists\ -> \ True]; \n freqs\ = \ Table[i, \ {i, \ numboffreq}]; \ \n phases\ = \ Table[i, \ {i, \ numboffreq}]; \ \n moduls\ = \ Table[i, \ {i, \ numboffreq}]; \ \n iphases\ = \ Table[i, \ {i, \ numboffreq}]; \ \n imoduls\ = \ Table[i, \ {i, \ numboffreq}]; \ \n Do[freqs[\([i]\)]\ = \ S1[\([i, 1]\)], \ {i, \ numboffreq}]\), \(Do[phases[\([i]\)]\ = \ S1[\([i, 2]\)], \ {i, \ numboffreq}]\), = \(Do[moduls[\([i]\)]\ = \ S1[\([i, 3]\)], \ {i, \ numboffreq}]\), = \(Do[iphases[\([i]\)]\ = \ S1[\([i, 4]\)], \ {i, \ numboffreq}]\ = \), \(Do[imoduls[\([i]\)]\ = \ S1[\([i, 5]\)], \ {i, \ numboffreq}]\n \n (*\ fonction\ d\[EAcute]crivant\ la\ d\[EAcute]croissance\ de\ = la\ fluorescence\ en\ pr\[EAcute]sence\ des\ accepteurs\ *) \), \(d[t_]\ := \ Exp[\((\(-t\)/tau)\) - eps\ Conc\ \((t/tau)\)^\((1/3)\)\ ]\ = \n\n\)}], "Input"], Cell[BoxData[ \(\(\n (*\ d\[EAcute]claration\ des\ tableaux\ qui\ contiendront\ les\ = valeurs\ calcul\[EAcute]es\ \[AGrave]\ comparer\ aux\ spectres\ *) \ \n num\ = \ Table[i, \ {i, \ numboffreq}]; \ \n dum\ = \ Table[i, \ {i, \ numboffreq}]; \ \n norm\ = \ Table[i, \ {i, \ numboffreq}]; \ \n phi\ = \ Table[i, \ {i, \ numboffreq}]; \ \n mod\ = \ Table[i, \ {i, \ numboffreq}]; \nchi = \ Table[i, \ = {i, \ 50}]; \)\)], "Input"], Cell[BoxData[{ \(\n\nConc = 0\), \(Do[Conc = Conc + \ 0.1; Do[\n (*\ calcul\ des\ transformations\ de\ fourier\ *) \n num[\([i]\)] = NIntegrate[\ d[t]\ Sin[2\ Pi\ freqs[\([i]\)]\ 1000000\ t], {t, 0, = 0.0000001}]; \ndum[\([i]\)] = NIntegrate[\ d[t]\ Cos[2\ Pi\ freqs[\([i]\)] 1000000\ t], {t, 0, = 0.0000001}]; \nnorm[\([i]\)] = NIntegrate[Exp[\(-t\)/tau], {t, 0, = 0.00001}]; \n (*\ calcul\ de\ la\ phase\ et\ de\ la\ modulations\ calcul\[EAcute]e\ *) \n phi[\([i]\)] = ArcTan[num[\([i]\)]/dum[\([i]\)]]*360/\((2\ = Pi)\); \n mod[\([i]\)] = \((\((num[\([i]\)]/norm[\([i]\)])\)^2 + \((dum[\([i]\)]/norm[\([i]\)])\)^2)\)^0.5, {i, = numboffreq}]; \n (*\ calcul\ du\ chisquare\ pour\ le\ guess\ = pr\[EAcute]c\[EAcute]dent \ *) \t\nchi[\([k]\)] = Sum[\((1/iphases[\([i]\)])\)^2\ \((phi[\([i]\)] - phases[\([i]\)])\)^2, {i, numboffreq}], = {k, 10}] \n\)}], "Input"] }, FrontEndVersion->"Microsoft Windows 3.0", ScreenRectangle->{{0, 800}, {0, 572}}, WindowSize->{724, 458}, WindowMargins->{{-22, Automatic}, {Automatic, 5}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file = from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1709, 49, 1835, 32, 730, "Input"], Cell[3547, 83, 476, 9, 190, "Input"], Cell[4026, 94, 1048, 21, 290, "Input"] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************) filename="Trans.txt" * trans.txt *DATA: FREQ PHASE MOD DELTAP DELTAM 5.0000000 7.450 0.981 0.021 0.001 29.1700000 29.410 0.734 0.021 0.001 53.3300000 37.740 0.587 0.031 0.001 77.5000000 42.720 0.499 0.056 0.002 101.6700000 46.670 0.440 0.050 0.002 125.8300000 49.590 0.390 0.053 0.002 150.0000000 52.060 0.358 0.036 0.001