Re: Assumptions in Integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg20584] Re: [mg20562] Assumptions in Integrate
- From: BobHanlon at aol.com
- Date: Sat, 30 Oct 1999 14:54:57 -0400
- Sender: owner-wri-mathgroup at wolfram.com
Julian, Integrate[Cos[n x], {x, -Pi, Pi}, Assumptions -> Element[n, Integers]] (2*Sin[Sqrt[n^2]*Pi])/Sqrt[n^2] Integrate[Cos[n x], {x, -Pi, Pi}, Assumptions -> n >= 0] (2*Sin[n*Pi])/n To get Mathematica to "evaluate" the Sqrt, it must believe that n is nonnegative Integrate[Cos[n x], {x, -Pi, Pi}, Assumptions -> {Element[n, Integers] , n >= 0}] (2*Sin[n*Pi])/n Integrate[Cos[n x], {x, -Pi, Pi}, Assumptions -> {Element[n, Integers] , n > 0}] (2*Sin[n*Pi])/n Bob Hanlon In a message dated 10/30/1999 7:14:07 AM, mtpagesj at lg.ehu.es writes: > I find the results of using assumptions in Integrate somewhat >stranege. For instance, > >In[21]:= Integrate[Cos[n x], {x, -Pi, Pi}] > >Out[21]= 2 Sin[n Pi] > ----------- > n > >In[22]:= Integrate[Cos[n x], {x, -Pi, Pi}, > Assumptions -> Element[n, Integers]] > >Out[22]= > 2 >2 Sin[Sqrt[n ] Pi] >------------------ > 2 > Sqrt[n ] > >In[23]:= $Version > >Out[23]= "4.0 for Power Macintosh (July 20, 1999)" > > I know I can define my own transformation rules, but one would >think that Mathematica should do it directly. >