Re: Series expansion of ArcSin around 1
- To: mathgroup at smc.vnet.net
- Subject: [mg21623] Re: [mg21598] Series expansion of ArcSin around 1
- From: Andrzej Kozlowski <andrzej at tuins.ac.jp>
- Date: Tue, 18 Jan 2000 02:35:12 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Is the following satisfactory? In[1]:= Simplify[ComplexExpand[Normal[Series[ArcSin[x], {x, 1, 4}]]], x < 1] Out[1]= 2 3 6720 Pi + Sqrt[2 - 2 x] (14887 - 1849 x + 477 x - 75 x ) --------------------------------------------------------- 13440 or if you prefer: In[2]:= Expand[%] Out[2]= Pi 14887 Sqrt[2 - 2 x] 1849 Sqrt[2 - 2 x] x -- + ------------------- - -------------------- + 2 13440 13440 2 159 Sqrt[2 - 2 x] x 5 3 -------------------- - --- Sqrt[2 - 2 x] x 4480 896 > From: Jacek Pliszka <pliszka at fuw.edu.pl> To: mathgroup at smc.vnet.net > Date: Sun, 16 Jan 2000 22:43:46 -0500 (EST) > To: mathgroup at smc.vnet.net > Subject: [mg21623] [mg21598] Series expansion of ArcSin around 1 > > Hi! > > I have the following problem. My x is close to 1 but sligthly > smaller. I want to expand ArcSin[x] around 1 but this is what I get: > > In[53]:= Series[ArcSin[x],{x,1,4}] > > I 3/2 3 I 5/2 > - (-1 + x) --- (-1 + x) > Pi 6 80 > Out[53]= -- - I Sqrt[2] Sqrt[-1 + x] + ------------- - --------------- + > 2 Sqrt[2] Sqrt[2] > > 5 I 7/2 > --- (-1 + x) > 448 9/2 >> --------------- + O[-1 + x] > Sqrt[2] > > How to tell Mathematica that my x is real and smaller than 1 > so it will not return all this complex numbers? > > Thanks for any help, > > Jacek > > >