ReBessel Function/MeijerG/no bug
- To: mathgroup at smc.vnet.net
- Subject: [mg24058] Re[mg24048]Bessel Function/MeijerG/no bug
- From: Roberto Brambilla <rlbrambilla at cesi.it>
- Date: Thu, 22 Jun 2000 01:01:50 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Dear Richard,
may be the bug has been "inserted" in version 4.
With Mathematica 3 I have the correct results that
agree with the numerical results.
If a^2>0 and Re[k]>1/2, I obtained
intg1=-I/(32Sqrt[2]Pi^2)MeijerG[{{1-k},{1,1+k}},
{{-1/2,-1/4,0,1/4,1/2},{}},(1-I)/(4a),1/4]
intg2=+I/(32Sqrt[2]Pi^2)MeijerG[{{1-k},{1,1+k}},
{{-1/2,-1/4,0,1/4,1/2},{}},(1+I)/(4a),1/4]
Note the last parameter r=1/4 that generalize MeijerG,
as explained in the index of built-in function of Math.Book.
Numerically, with a=1. and k=1 :
intg1 = 0.0576747+0.0580411 I
intg2 = 0.0576747-0.0580411 I
Regards
Roberto
Roberto Brambilla
CESI
Via Rubattino 54
20134 Milano
tel +39.2.2125.5875
fax +39.2.2125.610
rlbrambilla at cesi.it