Re: minimizing f(x,y) ???!!!!
- To: mathgroup at smc.vnet.net
- Subject: [mg25476] Re: minimizing f(x,y) ???!!!!
- From: rogalsky <rogalsky at faupt100.physik.uni-erlangen.de>
- Date: Mon, 2 Oct 2000 22:26:55 -0400 (EDT)
- Organization: University of Erlangen, Germany
- References: <8r1b8a$ifn@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
twirt at hotmail.com wrote: > I never used Mathematica before and want to find the minimum for the > following function: > > h(a,b) := g(a,b) / f(a,b) > > a [0 .. pi] > b [pi-a .. pi] > > f(a,b) := 1/3*(1+1/(4*pi)*(a+b-2*acos(-1-cos(a)- cos(b)))) > g(a,b) := 1/8*(2-cos(a)-cos(b)) Numerically or symbolic? Numerically f[a_, b_] = 1/3*(1 + 1/(4*Pi)*(a + b - 2*ArcCos[-1 - Cos[a] - Cos[b]])); g[a_, b_] = 1/8*(2 - Cos[a] - Cos[b]); h[a_, b_] = f[a, b]/g[a, b]; FindMinimum[h[a, b], {a, 2/3Pi, 0, Pi}, {b, 2/3Pi, 0, Pi}] yields: {0.925674, {a -> 2.53431, b -> 2.53431}} You get a nice plot of your function with: Plot3D[If[b > Pi - a, h[a, b], 1], {a, 0, Pi}, {b, 0, Pi}, PlotPoints -> 40] A symbolic expression is hard to get. You need to solve dh(a,a)/da=0 and it seems to me, that there is no closed symbolic expression for that. But you may investigate on that. Olaf Rogalsky -- \\|// (. .) +-----------------------------oOOo-(_)-oOOo----------------------------+ I Dipl. Phys. Olaf Rogalsky Institut f. Theo. Physik I I I Tel.: 09131 8528440 Univ. Erlangen-Nuernberg I I Fax.: 09131 8528444 Staudtstrasse 7 B3 I I rogalsky at theorie1.physik.uni-erlangen.de D-91058 Erlangen I +----------------------------------------------------------------------+