Re: Harmonic Analysis (Harmonic Matching) (Symbolic) in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg25598] Re: Harmonic Analysis (Harmonic Matching) (Symbolic) in Mathematica
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Wed, 11 Oct 2000 03:50:38 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <8rtsoq$dpd@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, insert your definitions and expand the polynom expr = a00 + a10 f[t] + a01 g[t] + a11 f[t] g[t] + a20*f[t]^2 + a21 f[t]^2 g[t] + andSoOn /. {f[t_] :> f1*Exp[I*w*t] + f2*Exp[-I*w*t], g[t_] :> g1*Exp[I*w*t] + g2*Exp[-I*w*t]} // Expand and here are the first harmonic Plus @@ Cases[expr, a_.*Exp[I*w*t]] Regards Jens AES wrote: > > How can one do symbolic harmonic analysis (aka "harmonic matching") in > Mathematica? > > That is, I'd like to insert sinusoidal functions f[t] and g[t] written as > > f[t] = f1 Exp[+j w t] + f1Star Exp[-j w t] > > g[t] = g1 Exp[+j w t] + g1Star Exp[-j w t] > > into a polynomial in f[t] and g[t], e.g. > > expr = a00 + a10 f[t] + a01 g[t] + a11 f[t] g[t] > + a20 [f[t]^2 + a21 f[t]^2 g[t] + and so on > > and then pull out the individual harmonic components, i.e. the > Exp[+j w t], Exp[-j w t], Exp[+2 j w t], Exp[-j w t], etc., components. > > (This may not be what some people call harmonic analysis, but it's a > common approach in engineering analysis of nonlinear systems.) > > A simple way to do this? > > (Note: the coefficients may themselves be expressions that contain > factors like Exp[constant] -- though not t explicitly.] > > Thanks, AES