MathGroup Archive 2000

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Compiled functions in NDSolve.

  • To: mathgroup at smc.vnet.net
  • Subject: [mg25680] Re: Compiled functions in NDSolve.
  • From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
  • Date: Thu, 19 Oct 2000 04:35:11 -0400 (EDT)
  • Organization: Universitaet Leipzig
  • References: <8sjhed$fo6@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Hi,

a) it is useless to compile parts of the equations because
   NDSolve[] compile the explicit rhs sides again. The function
   call in a compiled function may slow down the computation speed.

b) you need a wrapper function that call the compiled funtion only for
   numeric arguments
(* the compiled stuff *)
potx = Compile[{{x, _Real}, {y, _Real}}, x + y]
poty = Compile[{{x, _Real}, {y, _Real}}, x*y]

(* the wrapper patterns that prevent the evaluation with 
 symbolic arguments *)

PotX[x_?NumericQ, y_?NumericQ] := potx[x, y]
PotY[x_?NumericQ, y_?NumericQ] := poty[x, y]

NDSolve[{x'[t] == PotX[x[t], y[t]],
         y'[t] == PotY[x[t], y[t]], x[0] == 1, y[0] == 1}, {x[t], 
    y[t]}, {t, 0, 1}]

Hope that helps
  Jens


Daniel Lisak wrote:
> 
>     Does anybody know how can I use compiled functions in NDSolve ?
>     I have some compiled functions (they all depend on 3 real
>     variables: t, ro, v):
> 
> potencjalX = Compile[{t, ro, v}, -176.276/(ro^2 + v^2 t^2)^3];
> potencjalA = Compile[{t, ro, v}, -248.279/(ro^2 + v^2 t^2)^3];
> potencjalB = Compile[{t, ro, v}, -319.691/(ro^2 + v^2 t^2)^3];
> funfi = Compile[{t, ro, v}, ArcSin[ro/Sqrt[ro^2 + v^2t^2]]];
> funF = Compile[{t, ro, v}, (potencjalB[t, ro, v] - potencjalA[t, ro, v])/2];
> funv1 = Compile[{t, ro, v}, (potencjalA[t, ro, v] + potencjalB[t, ro,
> v])/2];
> 
>     and I want to solve ordinary differential equations:
> 
> rozw[apocz_, ro_, v_, tend_, nieskoncz_] := NDSolve[{
>       a1'[t] == a1[t] potencjalX[t, ro, v]/I,
>       a2'[t] == a2[t] potencjalB[t, ro, v]/I,
>       a3'[t] == a3[t] funv1[t, ro, v]/I +
>           a4[t] funF[t, ro, v] Exp[2I funfi[t, ro, v]]/I,
>       a4'[t] == a3[t] funF[t, ro, v] Exp[-2I funfi[t, ro, v]]/I +
>           a4[t] funv1[t, ro, v]/I,
>       a1[-nieskoncz] == apocz[[1]],
>       a2[-nieskoncz] == apocz[[2]],
>       a3[-nieskoncz] == apocz[[3]],
>       a4[-nieskoncz] == apocz[[4]]},
>     {a1, a2, a3, a4}, {t, -tend, tend}, MaxSteps -> 100000]
> 
>     when I evaluate this function:
> 
> rozw[{0, 0, 1, 0}, 3, 0.0003, 75000., 75000.]
> 
>     I see the following error:
> 
> CompiledFunction::cfsa: Argument t at position 1 should be a machine-size
> real number.
> 
>     Does anybody know how can I use these compiled functions in NDSolve ?
> 
> Daniel
> 
>


  • Prev by Date: Re: AxesLabel for ContourPlot
  • Next by Date: Re: A question of matrix multiply, who can solve it?
  • Previous by thread: Compiled functions in NDSolve.
  • Next by thread: A question of matrix multiply, who can solve it?