Re: Polar Grids in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg28216] Re: [mg28201] Polar Grids in Mathematica
- From: BobHanlon at aol.com
- Date: Thu, 5 Apr 2001 03:00:30 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Needs["Graphics`Graphics`"];
Needs["Graphics`ComplexMap`"];
DisplayTogether[
PolarPlot[{4/(2+Cos[t]), 4 Cos[t]-2},{t, 0, 2 Pi},
PlotStyle -> {{AbsoluteThickness[2],
RGBColor[1, 0, 0]}, {AbsoluteThickness[2], RGBColor[0, 0, 1]}}],
PolarMap[Identity, {0, 7, 1}, {0, 2 Pi, Pi/6}], Frame -> True,
PlotRange -> 1.03*{{-4, 6}, {-4, 4}}];
For log plots you will probably have to do this manually such as
DisplayTogether[
PolarPlot[{4/(2+Cos[t]), 4 Cos[t]-2},{t,0,2 Pi},
PlotStyle -> {{AbsoluteThickness[2],
RGBColor[1, 0, 0]}, {AbsoluteThickness[2], RGBColor[0, 0, 1]}}],
PolarPlot[Evaluate[Table[r, {r, 1, 7}]], {t, 0, 2Pi}],
Prolog -> Table[
Line[7*{{-Cos[t], -Sin[t]}, {Cos[t], Sin[t]}}], {t, 0, Pi, Pi/6}],
Frame -> True, PlotRange -> 1.03*{{-4, 6}, {-4, 4}}];
Bob Hanlon
In a message dated 2001/4/4 4:29:48 AM, PLarson at bju.edu writes:
>Does anyone know how to get polar grids for PolarPlot functions? Or
>even semi-log grids? (I can get rectangular grids, of course.)