Re: POWEREXPAND
- To: mathgroup at smc.vnet.net
- Subject: [mg31918] Re: POWEREXPAND
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Wed, 12 Dec 2001 04:13:58 -0500 (EST)
- References: <9v49ui$n28$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Peter, With t>0 Sqrt[(-1/t)^3] = Exp[1/2(Log[Abs[(-1/t)^3] + I Arg[(-1/t)^3])] = Exp[1/2(Log[Abs[(-1/t)^3] + I Arg[(-1/t)^3])] = Exp[1/2(Log[1/t^3] + I Pi)] = I /t^(3/2) Whereas Sqrt[-1/t] = Exp[1/2(Log[Abs[-1/t]]+ Arg[-1/t])] = Exp[1/2(Log[1/t]+ I Pi)] = I/Sqrt[t] So that Sqrt[-1/t]^3 = ( I/Sqrt[t)]^3 = -I/t^(3/2) Check: Simplify[Sqrt[(-1/t)^3], t>0] I/t^(3/2) Simplify[Sqrt[-1/t]^3, t>0] -(I/t^(3/2)) -- Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "Blimbaum Jerry DLPC" <BlimbaumJE at ncsc.navy.mil> wrote in message news:9v49ui$n28$1 at smc.vnet.net... > Concerning the recent question about PowerExpand of (-1/t)^(3/2) > Sqrt[-t] note that the results depend on how you enter the formula.... > > PowerExpand[Sqrt[(-1/t)^3] Sqrt[-t]] gives the result -1/t > > whereas > > PowerExpand[Sqrt[-1/t]^3 Sqrt[-t] gives the result 1/t > > > apparently typing in (-1/t)^(3/2) Sqrt[-t] in Mathematica > corresponds to the second way... > > > jerry blimbaum NSWC Panama City, Fl >