Re: Eigenvalue Problem
- To: mathgroup at smc.vnet.net
- Subject: [mg31999] Re: [mg31996] Eigenvalue Problem
- From: BobHanlon at aol.com
- Date: Mon, 17 Dec 2001 06:01:29 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
In a message dated 12/16/01 4:01:32 AM, smitsky at mindspring.com writes: >Hi, could someone show me how to use Mathematica to sucessfully answer >the >following problem: > >Show that the Eigenvalues of A = > >[a][b] >[c][d] > >must be real numbers. Thanks, Steve > A = {{a,b},{c,d}}; {\[Lambda], \[Mu]} = FullSimplify[Eigenvalues[A]] {(1/2)*(a + d - Sqrt[(a - d)^2 + 4*b*c]), (1/2)*(a + d + Sqrt[(a - d)^2 + 4*b*c])} {u,v} = FullSimplify[Eigenvectors[A]] {{-((-a + d + Sqrt[(a - d)^2 + 4*b*c])/(2*c)), 1}, {(a - d + Sqrt[(a - d)^2 + 4*b*c])/(2*c), 1}} Simplify[{A.u-\[Lambda]*u,A.v-\[Mu]*v}] {{0, 0}, {0, 0}} For the elements of the eigensystem to be real requires (a - d)^2 + 4*b*c >= 0 Bob Hanlon Chantilly, VA USA