Normal vector on a surface
- To: mathgroup at smc.vnet.net
- Subject: [mg29269] Normal vector on a surface
- From: Matthias.Bode at oppenheim.de
- Date: Sat, 9 Jun 2001 03:08:58 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Dear Colleagues, I have a function in the variables x1 and y1: Out[27]= 19.74211746962547 - 61.78321746073334* x1 + 70.84823523445556*x1^2 - 34.64681309362152*x1^3 + 5.822595947190386*x1^4 - 61.783217460733795*y1 + 188.56171712734522*x1*y1 - 208.7457484391798*x1^2*y1 + 99.21114279328117*x1^3*y1 - 16.223098505477388*x1^4*y1 + 70.8482352344551*y1^2 - 208.7457484391805*x1*y1^2 + 225.08774661852397*x1^2*y1^2 - 103.5151716236312*x1^3*y1^2 + 16.351931921608763*x1^4*y1^2 - 34.64681309362163*y1^3 + 99.21114279328117*x1*y1^3 - 103.51517162363109*x1^2*y1^3 + 45.654124756950296*x1^3*y1^3 - 6.928857192755963*x1^4*y1^3 + 5.822595947190411*y1^4 - 16.22309850547743*x1*y1^4 + 16.351931921608763*x1^2*y1^4 - 6.928857192755952*x1^3*y1^4 + 1.0137658500940734*x1^4*y1^4 This function yields a surface very similar to Sin[x1*y1] for 1<x1<3 and 1<y1<3. Now I want to calculate (how?) and draw (how?) several "Normalenvektors" (sorry, I do not know the English termini technici) which should sit smugly - like palisades - on the plane tangential to the surface. The "Normalenvektor" N in point P - according to Bronstein-Semendjajew - is a unity vector perpendicular to the tangential plane; its accompanying vectors e1 and e2 on the plane form a "right-handed system". N, e1 and e2 are referred to as the "accompanying tripod". - I understand the words but not their meaning. My attempts with Calculus`VectorAnalysis` and PlotVectorField3D &c. failed dismally. Thank you for your assistance, Matthias Bode Sal. Oppenheim jr. & Cie. KGaA Koenigsberger Strasse 29 D-60487 Frankfurt am Main GERMANY Tel.: +49(0)69 71 34 53 80 Mobile: +49(0)172 6 74 95 77 Fax: +49(0)69 71 34 6380 E-mail: matthias.bode at oppenheim.de Internet: http://www.oppenheim.de
- Follow-Ups:
- Re: Normal vector on a surface
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: Normal vector on a surface
- From: jmt <jmt@agat.net>
- Re: Normal vector on a surface