Re: Parallel Processing Toolkit
- To: mathgroup at smc.vnet.net
- Subject: [mg31048] Re: Parallel Processing Toolkit
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Sat, 6 Oct 2001 03:32:12 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <9pecmf$sj4$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, a parallel Runge-Kutta method ? It is attached. Regards Jens Blimbaum Jerry DLPC wrote: > > Does anyone have a notebook (that they could share) with examples of > how they have used Mathematica's Parallel Processing Toolkit.. > > thanks....jerry blimbaum NSWC Panama City, Fl filename="ParallelDIRKSend.nb" (*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 34318, 866]*) (*NotebookOutlinePosition[ 34954, 889]*) (* CellTagsIndexPosition[ 34910, 885]*) (*WindowFrame->Normal*) Notebook[{ Cell["\<\ When the steps of the DIRKmethod are evaluated we have to solve \ equations of the form\ \>", "Text"], Cell[BoxData[ \(TraditionalForm\`\(\ \[Xi]\_i = \ f \((t + \[Alpha]\ h, y + \[Beta]\ h\ \[Xi]\_i + \[Psi])\)\)\)], "DisplayFormula"], Cell[TextData[{ "For the numerical solution we will collect ", Cell[BoxData[ \(TraditionalForm\`y + \[Psi]\)]], " in the y argument of newtonSolve[]." }], "Text"], Cell[BoxData[ \(Needs["\<Parallel`Parallel`\>"]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(p2link = LaunchSlave["\<ilabws.informatik.uni-leipzig.de\>", "\<rsh `1` /home/kuska/bin/math -mathlink\>"]\)], "Input"], Cell[BoxData[ \(LinkObject[ "rsh ilabws.informatik.uni-leipzig.de /home/kuska/bin/math -mathlink", 3, 2]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(p2link = LaunchSlave["\<localhost\>", "\<math -mathlink\>"]\)], "Input"], Cell[BoxData[ \(LinkObject["math -mathlink", 2, 2]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(Clear[newtonSolve]\n\), \(DIRKNDSolve::newtit = "\<Implicit solution of does not terminate after `1` steps.\>"\n\), \(newtonSolve[t_?NumericQ, h_?NumericQ, \n\t\ \ yn_List, \ f_, \n\t\ \ alpha_, beta_, \n\t\ \ jac_, \n\t\ \ \ maxit_Integer, errPhi_?NumericQ] := \n Module[{xi, b, delta, ludecomp, i, tau, arg}, \n\t\t\ \ xi = yn; \n \t\t\ tau = t + alpha*h; \n\t\ti = 0; \n\t\t While[\(i++\) < maxit, \n\t\t\targ = yn + beta*h*xi; \n\t\t\t ludecomp = LUDecomposition[ IdentityMatrix[Length[xi]] - beta*h*jac[tau, arg]]; \n\t\t\t\ b = xi - f[tau, arg]; \n\t\t\t\ delta = LUBackSubstitution[ludecomp, b]; \n\t\t\t\ xi -= delta; \n \t\t\t\ If[\(errPhi > Sqrt[Dot[#, #]]&\)[delta], \n\t\t\t\t\ \ \(Return[xi]; \)\n\t\t\t\t]\n\t\t\t]; \n\t\t Message[DIRKNDSolve::newtit, i]; \n\t\txi\n\t]\n\t\)}], "Input"], Cell[BoxData[ \("Implicit solution of does not terminate after `1` steps."\)], "Output"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(beta\)\" is similar to \ existing symbol \"\!\(Beta\)\"."\)], "Message"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(arg\)\" is similar to \ existing symbol \"\!\(Arg\)\"."\)], "Message"] }, Open ]], Cell[BoxData[ \(DIRKErrorEstimate[h_, y1_, yEstimate_, errY_] := \n\t Module[{errEst, hFac}, \n\t\t\ \ If[{} != yEstimate, \n\t\t\t\ \ errEst = \(Plus\ @@\ #/Length[#]\ &\)\ [Abs\ /@\ \((y1 - yEstimate)\)], \n \t\t\t\ \ errEst = 100. *$MachineEpsilon\n\t\t\t\t]; \n\t\t\ \ If[Abs[errEst] <= $MachineEpsilon, errEst = 10. $MachineEpsilon]; \n \t\t\thFac = Min[5.0, \(($SaveFactor*errY/errEst)\)^\((1/4)\)]; \n \t\t\ \ hFac*h\n\t\t]\)], "Input"], Cell[BoxData[ \(\(\nDIRKPredictY[y0_, h_, tau_, xi1_, xi2_, xi3_, xi4_] := \n\t\ \ Module[{b1, b2, b3, b4}, \n \t\t\t\t\ {b1, b2, b3, b4} = { tau*\((\(-28\)/5\ + \ \((69/5\ - \ \((46*tau)\)/5)\)*tau)\), \ \ \n\t\t\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ tau*\((3\ + \ tau*\((\(-15\)/2\ + \ 6*tau)\))\), \ \n\t\t\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ tau*\((\(-12\)/5\ + \ \((21/5\ - \ \((14*tau)\)/5)\)*tau)\), \ \n\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ tau*\((6\ + \ tau*\((\(-21\)/2\ + \ 6*tau)\))\)}; \n\t\t\t\ \ y0 + h*\((b1*xi1 + b2*xi2 + b3*xi3 + b4*xi4)\)\n\t\t\ \ ]\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[{ \(Clear[DIRKSerial]\n\), \($SaveFactor = 0.8; \n$RightHandSide = Null; \ (*\ f[t, y]\ of\ the\ differential\ equations\ as\ pure\ function\ *) \n$Jacobian = Null; \ \ \ \ \ \ \ \ \ \ \ \ (*\ D[f, y]\ of\ the\ system\ as\ pure\ function\ *) \n\n DIRKSerial[t_, y0_List, h_, maxit_Integer, errPhi_?NumericQ, errY_?NumericQ, yEstimate_List] := \n\t Module[{xi1, xi2, xi3, xi4, psi3, psi4, y1, y1Estimate, hNext, tau}, \n \t\t\ \ xi1 = newtonSolve[t, h, y0, $RightHandSide, 1/2, 1/2, $Jacobian, maxit, errPhi]; \n\t\t\ \ xi2 = newtonSolve[t, h, y0, $RightHandSide, 2/3, 2/3, $Jacobian, maxit, errPhi]; \n\t\t\ \ psi3 = y0 + 5*h*\((\(-xi1\) + xi2)\)/2; \n\t\t\ \ psi4 = y0 + h*\((\(-5\)*xi1 + 4*xi2)\)/3; \n\t\t\ \ xi3 = newtonSolve[t, h, psi3, $RightHandSide, 1/2, 1/2, $Jacobian, maxit, errPhi]; \n\t\t\ \ xi4 = newtonSolve[t, h, psi4, $RightHandSide, 1/3, 2/3, $Jacobian, maxit, errPhi]; \n\t\t\ \ y1 = y0 + h*\((3*\((xi2 + xi4)\)/2 - xi1 - xi3)\); \n \t\t (*\ Now\ we\ estimate\ the\ error\ from\ the\ prediction\ of\ the \ last\ step\ ... *) \n\t\t\ \ hNext = DIRKErrorEstimate[h, y1, yEstimate, errY]; \n\t\t\ \ tau = 1. + hNext/h; \n \t\t\t (*\ and\ predict\ the\ y - values\ for\ t + h + hNext\ *) \t\t\t\t\n\ \ \ \ \ \ \ y1Estimate = DIRKPredictY[y0, h, tau, xi1, xi2, xi3, xi4]; \n \ \ \ \ \ \ \ {y1, hNext, y1Estimate}\n\t\t]\)}], "Input"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\($Jacobian\)\" is \ similar to existing symbol \"\!\(Jacobian\)\"."\)], "Message"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(y1Estimate\)\" is \ similar to existing symbol \"\!\(yEstimate\)\"."\)], "Message"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(hNext\)\" is similar to \ existing symbol \"\!\(Next\)\"."\)], "Message"], Cell[BoxData[ \(General::"stop" \( : \ \) "Further output of \!\(General :: \"spell1\"\) will be suppressed \ during this calculation."\)], "Message"] }, Open ]], Cell[BoxData[{ \($DIRKLinkP2 = Null; \n\n ParallelDIRKAlgorithmQ[DIRKParallel\ , lnk_] := If[Head[lnk] === LinkObject, True, False]\n\), \(ParallelDIRKAlgorithmQ[DIRKSerial\ , lnk_] := False\n\), \(ParallelDIRKAlgorithmQ[meth_Symbol, lnk_] := If[meth === DIRKParallel\ && \ Head[lnk] === LinkObject, True, False]\n \), \(ParallelDIRKAlgorithmQ[meth_Symbol, Null] := False\n\), \(DIRKGetVector[lnk_]\ := \n\ \ \ Module[{pkt, \ i}, \n\ \ \ \ \ \ \ \ i\ = \ 0; \ \n\ \ \ \ \ \ \ \ \ While[\(i++\)\ < \ $IterationLimit, \n\t\ \ \ \ \ pkt\ = \ LinkRead[lnk]; \n\t\ \ \ \ \ If[VectorQ[pkt, \ NumericQ], \ Return[pkt]]; \n \ \ \ \ \ \ \ \ \ \ \ \ \ \ Pause[1]; \n\ \ \ \ \ \ \ \ \ \ \ \ ]; \n\ \ ]\n\n (*\ A\ condition\ is\ added\ to\ the\ function\ to\ prevent\ the\ evaluation \ inside\ DIRKParallel . \n\t\ \ the\ DIRKNDSolve[]\ function\ will \ export\ $DIRKLinkP2 = Null\ to\ P2\ and\ than\ set\ \n\t\t\ \ the\ value\ of\ $DIRKLinkP2\ to\ a\ \(LinkObject[] . \)\ *) \n\n\), \(DIRKParallelOnP2[t_?NumericQ, y0_List, h_?NumericQ, maxit_Integer, errPhi_?NumericQ] /; \ $DIRKLinkP2 === Null := \n\t\ \ Module[{xi1, xi2, psi4, xi4}, \t\t\ \n\t\t\t\ xi2 = newtonSolve[t, h, y0, $RightHandSide, 2/3, 2/3, $Jacobian, maxit, errPhi]; \n\t\t\t\ \ LinkWrite[$ParentLink, xi2]; \n \ \ \ \ \ \ \ \ \ xi1 = DIRKGetVector[$ParentLink]; \n\t\t\ \ \ \ psi4 = y0 + h*\((\(-5\)*xi1 + 4*xi2)\)/3; \n\t\t\ \ \ \ xi4 = newtonSolve[t, h, psi4, $RightHandSide, 1/3, 2/3, $Jacobian, maxit, errPhi]; \n\ \ \ \ \ \ \ \ \ LinkWrite[$ParentLink, xi4]; \n\t\t\ \ ]\n\n\), \(DIRKParallel[t_, y0_List, h_, maxit_Integer, errPhi_?NumericQ, errY_?NumericQ, yEstimate_List] := \n\t Module[{xi1, xi2, xi3, xi4, psi3, y1, y1Estimate, hNext, tau}, \n \t\t\ \ LinkWrite[$DIRKLinkP2, EvaluatePacket[DIRKParallelOnP2[t, y0, h, maxit, errPhi]]]; \n \t\t\ \ xi1 = newtonSolve[t, h, y0, $RightHandSide, 1/2, 1/2, $Jacobian, maxit, errPhi]; \n\t\t\txi2 = DIRKGetVector[$DIRKLinkP2]; \n\t\t\ \ LinkWrite[$DIRKLinkP2, xi1]; \n\t\t\ \ psi3 = y0 + 5*h*\((\(-xi1\) + xi2)\)/2; \n\t\t\ \ xi3 = newtonSolve[t, h, psi3, $RightHandSide, 1/2, 1/2, $Jacobian, maxit, errPhi]; \n\t\t\ \ xi4 = DIRKGetVector[$DIRKLinkP2]; \n \t\t\ \ While[LinkReadyQ[$DIRKLinkP2], \ (*\ Clean\ the\ link\ *) \n \t\t\t\ \ \ \ \ LinkRead[$DIRKLinkP2]\n\t\t\t\ \ ]; \n\t\t\ \ y1 = y0 + h*\((3*\((xi2 + xi4)\)/2 - xi1 - xi3)\); \n \t\t (*\ Now\ we\ estimate\ the\ error\ from\ the\ prediction\ of\ the \ last\ step\ ... *) \n\t\t\ \ hNext = DIRKErrorEstimate[h, y1, yEstimate, errY]; \n\t\t\ \ tau = 1. + hNext/h; \n \t\t\t (*\ and\ predict\ the\ y - values\ for\ t + h + hNext\ *) \t\t\t\t\n\ \ \ \ \ \ \ y1Estimate = DIRKPredictY[y0, h, tau, xi1, xi2, xi3, xi4]; \n \ \ \ \ \ \ \ {y1, hNext, y1Estimate}\n\t\t]\)}], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(DIRKNDSolve::mxst = "\<Maximum number of `1` steps reached at the point `2`==`3`.\>"\)], "Input"], Cell[BoxData[ \("Maximum number of `1` steps reached at the point `2`==`3`."\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(Clear[DIRKIntegrate]\n\t\), \(DIRKIntegrate[tsym_, t0_, t1_, yInit_, \n\ \ \ \ hInit_, errImplicit_, errY_, \n\t\ maxIterations_Integer, \n\tmaxSteps_, \n\tdirkmethod_\n \ \ \ ] := \n\t Module[{posneg, t, y, yEstimate, h, hNext, i, outsave}, \n\t\t\ \ posNeg = Sign[t1 - t0]; \n\t\t\ \ t = t0; \n\t\t\ \ y = yInit; \n \t\t\ \ yEstimate = {}; \n\t\t\ \ h = \(hNext = hInit*posNeg\); \n \t\t\ i = 0; \n\t\t\ outsave = {{t0, yInit}}; \n\t\t\ While[True, \n\t\t\t\ \ \ If[\((t - t1)\)*posNeg + $MachineEpsilon > 0.0, \ Break[]]; \n \t\t\t\ \ \ If[\((t + h - t1)\)*posNeg > 0.0, \ h = t1 - t]; \ (*\ cut\ if\ overshoot\ the\ end\ point\ *) \n \t\t\t\ \ \ {y, hNext, yEstimate} = \n\t\t\t\t\ \ \ \ \ \ dirkmethod[t, y, h, \n\t\t\t\t\t\ \ \ \ \ \ \ \ maxIterations, errImplicit, errY, yEstimate]; \n\t\t\t\ \ \ \ t += h; \n \t\t\t\ \ \ \ h = hNext; \n\t\t\t\ \ \ outsave = Join[outsave, {{t, y}}]; \n\t\t\t\ \ \ If[\(++i\)\ > \ maxSteps, \n\t\t\t\t\ \ \ \ Message[DIRKNDSolve::mxst, maxSteps, tsym, t]; \n\t\t\t\t\ \ \ \ Break[]; \n\t\t\t\t]\n\t\t\ \ \ ]; \n\t\t\ \ outsave\n\t\t]\)}], "Input"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(hInit\)\" is similar to \ existing symbol \"\!\(yInit\)\"."\)], "Message"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(maxIterations\)\" is \ similar to existing symbol \"\!\(MaxIterations\)\"."\)], "Message"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(maxSteps\)\" is similar \ to existing symbol \"\!\(MaxSteps\)\"."\)], "Message"], Cell[BoxData[ \(General::"stop" \( : \ \) "Further output of \!\(General :: \"spell1\"\) will be suppressed \ during this calculation."\)], "Message"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(\nClear[dirkMakeFun]\n \n (*\ We\ must\ wrap\ a\ Hold[]\ around\ the\ Part[new, _]\ to\ \ \n \t\t\tprevent\ that\ the\ part\ of\ a\ symbol\ is\ serached\ *) \n\t\t \), \(dirkMakeVars[y_List, new_Symbol] := \n\t Module[{x, i}, \n\t\ \ Thread[y -> Table[Hold[new[\([x]\)]]\ /. \ x -> i, {i, Length[y]}]]\n \t\t]\n\), \(DIRKNDSolve::noexpl = "\<No explicit solution found for equations `1`.\>"\n\n\t\), \(dirkMakeFun[eqn : {_Equal .. }, y_List, t_Symbol, compile_: True] := \n \tModule[{sol, f, jac, rules, newsym, fj}, \n\t\t\ \ sol = \ Solve[eqn, \(D[#, t]\ &\)\ /@\ y]; \n\t\t\ If[sol == {}, \n\t\t\t\ \ Message[DIRKNDSolve::noexpl, eqn]; \n \t\t\t\ \ Return[$Failed]; \n\t\t\t]; \n\t\t\ \ f = D[y, t]\ /. \ sol; \ (*\ explicit\ solution\ *) \n\t\t\ jac = \(Outer[D[#1, #2]\ &, #, y]\ &\)\ /@\ f; \n\t\t newsym = Unique[]; \n\t\trules = \ dirkMakeVars[y, newsym]; \n\t\t fj = Transpose[{f, jac}] /. \ \ rules; \n\t\t If[compile, \n \t\t\t (*\ at\ first\ we\ add\ the\ function\ arguments\ for\ compile\n \t\t\t\t\t\twith\ an\ evaluated\ newsym, \ than\ Hold[]\ is\ wrapped\n\t\t\t\t\t\tand\ the\ Hold[part[_]]\ are\ removed\ with\ the\ last\n\t\t\t\t\t\tReplace[]\ *) \n\t\t fj = Map[Hold, Map[{{{t, _Real}, {newsym, _Real, 1}}, #}\ &\ , fj, {2}]\ , { 2}] /. \ Hold[a_Part] :> \ a; \n \t\t\t (*\ Now\ we\ can\ start\ with\ compile . \ To\ prevent\ a\ early\n \t\t\t\t\t\tevaluation\ of\ the\ Part[]\ function\ in\ the\ Apply[]\ call\ an\ Unevaluated[]\ is\ needed\ *) \n\t\t\t fj\ /. \ Hold[l_]\ :> \ Apply[Compile, Unevaluated[l]]\n \t\t\t (*\ Else\ *) , \n\t\t\t ReleaseHold[Map[Function[Evaluate[{t, newsym}], #]\ \ &, fj, {2}]]\n \t\t\t]\n\t]\)}], "Input"], Cell[BoxData[ \("No explicit solution found for equations `1`."\)], "Output"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(compile\)\" is similar \ to existing symbol \"\!\(Compile\)\"."\)], "Message"] }, Open ]], Cell[BoxData[ \(\(DIRKMakeInterpolation[tsym_Symbol, l : {{_, _List} .. }] := \n\t\ \ Module[{t, y}, \n\t\ \ \ \ {t, y} = \ Transpose[l]; \n\t\t\ \ \(\(Interpolation[Transpose[{t, #}]]\)[tsym]\ &\)\ /@\ Transpose[y]\n \ \ ]\t\t\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[{ \(\nOptions[DIRKNDSolve] = {MaxSteps -> 4000, MaxIterations -> 20, ImplicitError -> Automatic, Compiled -> True, LocalError -> 0.1*^-5, \n\t\ \ Method -> DIRKSerial, DIRKSlave -> Null}; \n\n \n$DIRKMethods = {DIRKSerial, DIRKParallel}; \n\n DIRKNDSolve::noninit = "\<Initial values `3` are not numbers at `1`==`2`.\>"\), \(DIRKNDSolve::nonrhs = "\<Right hand side of `1` does not evaluate to numbers at `2`==`3`.\>"\ \), \(DIRKNDSolve::ivmeth = "\<Invalid solution method `1` given. Method must be one of `2`.\>"\), \(DIRKNDSolve::invp2 = "\<DIRKSlave must be a LinkObject[] for parallel evaluation instead of \ `1`. Proceed with serial algorithm.\>"\n\), \(DIRKNDSolve[deqn : {_Equal .. }, y_List, {t_Symbol, t0_?NumericQ, t1_?NumericQ}, opts___] := \n\t Module[{compile, maxit, maxsteps, y0, fj, fun, jac, errPhi, locError, hinit, ndsdata, meth, p2slave}, \n \t\t\ \ {compile, maxit, maxsteps, errPhi, locError} = \({Compiled, MaxIterations, MaxSteps, ImplicitError, LocalError} /. \ {opts}\) /. \ Options[DIRKNDSolve]; \n \t\t\ \ {meth, p2slave} = \({Method, DIRKSlave}\ /. \ {opts}\)\ /. \ Options[DIRKNDSolve]; \n\t\t\tIf[\(! MemberQ[$DIRKMethods, meth]\), \n\t\t\t\t\ \ Message[DIRKNDSolve::ivmeth, meth, $DIRKMethods]; \n\t\t\t\t\ \ Return[$Failed]; \n\t\t\t\t]; \n\t\t\ If[Automatic === errPhi, \n\t\t\t\ \ \(errPhi = locError/10. ; \)\n \t\t\t]; \n\t\t\ \ y0 = y\ /. \ t -> \ t0; \n\t\t\ \ y0 = N[y0 /. Solve[deqn, y0]]; \n\t\t\ If[And\ @@\((\(\(! VectorQ[#, NumericQ]\)\ &\)/@\ y0)\), \n\t\t\t\ \ Message[DIRKNDSolve::noninit, t, t0, y0]; \n\t\t\t\ \ Return[$Failed]; \n\t\t\t]; \n\t\t\ fj = dirkMakeFun[deqn, y, t, compile]; \n\t\t\ If[\(! VectorQ[ Flatten[Function[z, \ Map[#[t0, z]\ &, fj, {2}]]\ /@\ y0], NumericQ]\), \n\t\t\t\ \ Message[DIRKNDSolve::nonrhs, deqn, t, t0]; \n\t\t\t\ \ Return[$Failed]; \n\t\t\t]; \n\t\t{fun, jac} = fj[\([1]\)]; \n \t\t\ $RightHandSide = fun; \ (*\ Assign\ the\ globals\ *) \n \t\t\ \ $Jacobian = jac; \n\t\t\t If[ParallelDIRKAlgorithmQ[meth, p2slave], \n\t\t\t\ \ ExportEnvironment[{newtonSolve, DIRKGetVector, DIRKParallelOnP2, $RightHandSide, $Jacobian, $DIRKLinkP2}]; \n \t\t\t\ \ While[LinkReadyQ[p2slave], LinkRead[p2slave]]; \n \t\t\t\ \ $DIRKLinkP2 = p2slave, \n\t\t\t (*\ Else\ *) \n\t\t\t\ \ If[meth === DIRKParallel\ && \ Head[p2slave] =!= LinkObject, \n \t\t\t\t\ \ $DIRKLinkP2 = Null; \n\t\t\t\ \ \ \ Message[DIRKNDSolve::invp2, p2slave]; \n\t\t\t\t\ \ meth = DIRKSerial; \n\t\t\t\t]\n\t\t\t\ ]; \n\t\t y0 = y0[\([1]\)]; \n\t\t\ hinit = N[\((t1 - t0)\)/maxsteps]; \n\t\t ndsdata = DIRKIntegrate[t, t0, t1, y0, 0.01, errPhi, locError, maxit, maxsteps, meth]; \n\t\t\ $DIRKLinkP2 = Null; \n\t\t\ Thread[y -> DIRKMakeInterpolation[t, ndsdata]]\n\t\t]\)}], "Input"], Cell[BoxData[ \("Initial values `3` are not numbers at `1`==`2`."\)], "Output"], Cell[BoxData[ \("Right hand side of `1` does not evaluate to numbers at `2`==`3`."\)], "Output"], Cell[BoxData[ \("Invalid solution method `1` given. Method must be one of `2`."\)], "Output"], Cell[BoxData[ \("DIRKSlave must be a LinkObject[] for parallel evaluation instead of \ `1`. Proceed with serial algorithm."\)], "Output"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(deqn\)\" is similar to \ existing symbol \"\!\(eqn\)\"."\)], "Message"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(maxsteps\)\" is similar \ to existing symbol \"\!\(maxSteps\)\"."\)], "Message"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(hinit\)\" is similar to \ existing symbol \"\!\(hInit\)\"."\)], "Message"], Cell[BoxData[ \(General::"stop" \( : \ \) "Further output of \!\(General :: \"spell1\"\) will be suppressed \ during this calculation."\)], "Message"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Timing[ dirksolp = DIRKNDSolve[{\(y[1]'\)[t] == \(y[2]\)[t], \(y[2]'\)[t] == \(-\(y[1]\)[t]\), \(y[1]\)[0] == 0, \(y[2]\)[0] == 1}, {\(y[1]\)[t], \(y[2]\)[t]}, {t, 0, 8 \[Pi]}, MaxSteps -> 1000, Method -> DIRKParallel, DIRKSlave -> p2link, Compiled -> False]]\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(14.2799999999999975`\ Second\), ",", RowBox[{"{", RowBox[{ RowBox[{\(\(y[1]\)[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 25.1327412287183449`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}], ",", RowBox[{\(\(y[2]\)[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 25.1327412287183449`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}]}], "}"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Timing[ dirksols = DIRKNDSolve[{\(y[1]'\)[t] == \(y[2]\)[t], \(y[2]'\)[t] == \(-\(y[1]\)[t]\), \(y[1]\)[0] == 0, \(y[2]\)[0] == 1}, {\(y[1]\)[t], \(y[2]\)[t]}, {t, 0, 8 \[Pi]}, MaxSteps -> 1000, Compiled -> False]]\)], "Input"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(dirksols\)\" is similar \ to existing symbol \"\!\(dirksolp\)\"."\)], "Message"], Cell[BoxData[ RowBox[{"{", RowBox[{\(19.3699999999999974`\ Second\), ",", RowBox[{"{", RowBox[{ RowBox[{\(\(y[1]\)[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 25.1327412287183449`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}], ",", RowBox[{\(\(y[2]\)[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 25.1327412287183449`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}]}], "}"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Plot[Evaluate[{\(y[1]\)[t], \(y[2]\)[t]}\ /. \ dirksolp], \ {t, 0, 4 \[Pi]}, PlotStyle -> {RGBColor[0, 0, 0], RGBColor[1, 0, 0]}] \)], "Input"], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Plot[Evaluate[{\(y[1]\)[t], \(y[2]\)[t]}\ /. \ dirksols], \ {t, 0, 4 \[Pi]}, PlotStyle -> {RGBColor[0, 0, 0], RGBColor[1, 0, 0]}] \)], "Input"], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(stiffdeqn = {\(y1'\)[t] == \(-\((0.013 - 1000. *y3[t])\)\)*y1[t], \n\ \ \(y2'\)[t] == \(-2500. \)*y2[t]*y3[t], \n\ \(y3'\)[t] == \(-0.013\)*y1[t] - \((1000. *y1[t] + 2500. y2[t])\)*y3[t]}\)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["y1", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", \(y1[t]\ \((\(-0.0130000000000000004`\) + 1000.`\ y3[t])\)\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["y2", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", RowBox[{ RowBox[{"-", StyleBox["2500.`", StyleBoxAutoDelete->True, PrintPrecision->4]}], " ", \(y2[t]\), " ", \(y3[t]\)}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["y3", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "==", RowBox[{ RowBox[{ RowBox[{"-", StyleBox["0.0130000000000000004`", StyleBoxAutoDelete->True, PrintPrecision->2]}], " ", \(y1[t]\)}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ StyleBox["1000.`", StyleBoxAutoDelete->True, PrintPrecision->4], " ", \(y1[t]\)}], "+", RowBox[{ StyleBox["2500.`", StyleBoxAutoDelete->True, PrintPrecision->4], " ", \(y2[t]\)}]}], ")"}], " ", \(y3[t]\)}]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(initcond = {y1[0] == 1, y2[0] == 1, y3[0] == 0}\)], "Input"], Cell[BoxData[ \({y1[0] == 1, y2[0] == 1, y3[0] == 0}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Timing[ dirksolp = DIRKNDSolve[ Join[stiffdeqn, initcond], {y1[t], y2[t], y3[t]}, {t, 0, 51}, Method -> DIRKParallel, DIRKSlave -> p2link, Compiled -> False]] \)], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{\(0.959999999999999964`\ Second\), ",", RowBox[{"{", RowBox[{ RowBox[{\(y1[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 50.9999999999999964`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}], ",", RowBox[{\(y2[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 50.9999999999999964`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}], ",", RowBox[{\(y3[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 50.9999999999999964`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}]}], "}"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Timing[ dirksols = DIRKNDSolve[ Join[stiffdeqn, initcond], {y1[t], y2[t], y3[t]}, {t, 0, 51}, Compiled -> False]]\)], "Input"], Cell[BoxData[ \(General::"spell1" \( : \ \) "Possible spelling error: new symbol name \"\!\(dirksols\)\" is similar \ to existing symbol \"\!\(dirksolp\)\"."\)], "Message"], Cell[BoxData[ RowBox[{"{", RowBox[{\(1.41999999999999992`\ Second\), ",", RowBox[{"{", RowBox[{ RowBox[{\(y1[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 50.9999999999999964`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}], ",", RowBox[{\(y2[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 50.9999999999999964`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}], ",", RowBox[{\(y3[t]\), "\[Rule]", RowBox[{ TagBox[\(InterpolatingFunction[{{0, 50.9999999999999964`}}, "<>"]\), False, Editable->False], "[", "t", "]"}]}]}], "}"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Plot[Evaluate[{y1[t], y2[t], 100000*y3[t]}\ /. \ dirksolp], \ {t, 0, 51}, PlotStyle -> {RGBColor[0, 0, 0], RGBColor[1, 0, 0], RGBColor[0, 0, 1]}] \)], "Input"], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Plot[Evaluate[{y1[t], y2[t], 100000*y3[t]}\ /. \ dirksols], \ {t, 0, 51}, PlotStyle -> {RGBColor[0, 0, 0], RGBColor[1, 0, 0], RGBColor[0, 0, 1]}] \)], "Input"], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]], Cell[BoxData[ \(MakeDEqn[n_Integer] := { \(y[1]'\)[t] == \(y[1]\)[t]*\((\(y[2]\)[t] - \(y[n]\)[t])\), \n \t\t\t\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Sequence\ @@\ Table[\(y[i]'\)[t] == \(y[i]\)[t]*\((\(y[i + 1]\)[t] - \(y[i - 1]\)[t])\), {i, 2, n - 1}], \n \t\t\t\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \(y[n]'\)[t] == \(y[n]\)[t]*\((\(y[1]\)[t] - \(y[n - 1]\)[t])\), \n \t\t\t\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \(y[1]\)[0] == 1, \n \t\t\t\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Sequence\ @@\ Table[\(y[i]\)[0] == 1/8, {i, 2, n}]}\)], "Input"], Cell[BoxData[ \(\(dirksols = DIRKNDSolve[MakeDEqn[32], Table[\(y[i]\)[t], {i, 1, 32}], {t, 0, 2 \[Pi]}, Compiled -> True, Method -> DIRKParallel, DIRKSlave -> p2link]; \)\)], "Input"], Cell[BoxData[ \(\(data = Table[Table[\(y[i]\)[t], {i, 1, 32}] /. \ dirksols, {t, 0, 2 \[Pi], \[Pi]/20}]; \)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(ListPlot3D[data, MeshRange -> {{1, 32}, {0, 2 \[Pi]}}, Mesh -> False, AxesLabel -> {HoldForm[n], HoldForm[t], HoldForm[u\_i[t]]}, FormatType -> TraditionalForm, TextStyle -> {FontFamily -> "\<Times\>"}, PlotRange -> All]\)], "Input"], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] SurfaceGraphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]], Cell[BoxData[ \(CheckTiming[n_Integer, \ opts___]\ := \n\t\ \ Module[{tp, \ ts, \ yps, \ t1, \ t2}, \n\t\t\ \ \ yps\ = \ Table[\(y[i]\)[t], \ {i, \ 1, \ n}]; \n\t\t\ \ \ t1\ = \ AbsoluteTime[]; \n\ \ \ \ \ \ \ \ ts\ = \ First[ Timing[DIRKNDSolve[MakeDEqn[n], \ yps, \ {t, \ 0, \ 2 \[Pi]}, \ opts]]]; \n\ \ \ \ \ \ \ \ t2\ = \ AbsoluteTime[]; \n \ \ \ \ \ \ \ \ ts\ = \ {ts, \ t2\ - \ t1}; \n\ \ \ \ \ \ \ \ t1\ = \ AbsoluteTime[]; \ \ \n\t\t\ \ \ tp\ = \ First[ Timing[DIRKNDSolve[MakeDEqn[n], \ yps, \ {t, \ 0, \ 2 \[Pi]}, \n \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Method\ -> \ DIRKParallel, \ DIRKSlave\ -> \ p2link, \ opts]]]; \n\ \ \ \ \ \ \ \ t2\ = \ AbsoluteTime[]; \n \ \ \ \ \ \ \ \ tp\ = \ {tp, \ t2\ - \ t1}; \n\t\t\ \ Print["\<n -> \>", \ n, \ "\< serialTime -> \>", \ ts, \ "\< parallelTime -> \>", \ tp]; \n \t\t\ {n, \ ts, \ tp}\ /. \ Second\ -> \ 1\n\t\t]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(CheckTiming\ /@\ {4, 8, 16, 32}\)], "Input"], Cell[BoxData[ InterpretationBox[ \("n -> "\[InvisibleSpace]4 \[InvisibleSpace]" serialTime -> "\[InvisibleSpace]{ 4.45000000000004547`\ Second, 5.`6.4185} \[InvisibleSpace]" parallelTime -> "\[InvisibleSpace]{ 3.17000000000007275`\ Second, 5.`6.4185}\), SequenceForm[ "n -> ", 4, " serialTime -> ", { Times[ 4.4500000000000455, Second], 5.}, " parallelTime -> ", { Times[ 3.1700000000000728, Second], 5.}], Editable->False]], "Print"], Cell[BoxData[ InterpretationBox[ \("n -> "\[InvisibleSpace]8 \[InvisibleSpace]" serialTime -> "\[InvisibleSpace]{ 6.76999999999998181`\ Second, 7.`6.5647} \[InvisibleSpace]" parallelTime -> "\[InvisibleSpace]{ 4.60999999999989995`\ Second, 8.`6.6227}\), SequenceForm[ "n -> ", 8, " serialTime -> ", { Times[ 6.7699999999999818, Second], 7.}, " parallelTime -> ", { Times[ 4.6099999999999, Second], 8.}], Editable->False]], "Print"], Cell[BoxData[ InterpretationBox[ \("n -> "\[InvisibleSpace]16 \[InvisibleSpace]" serialTime -> "\[InvisibleSpace]{ 17.9200000000000736`\ Second, 19.`6.9983} \[InvisibleSpace]" parallelTime -> "\[InvisibleSpace]{ 12.6600000000000822`\ Second, 19.`6.9983}\), SequenceForm[ "n -> ", 16, " serialTime -> ", { Times[ 17.920000000000073, Second], 19.}, " parallelTime -> ", { Times[ 12.660000000000082, Second], 19.}], Editable->False]], "Print"], Cell[BoxData[ InterpretationBox[ \("n -> "\[InvisibleSpace]32 \[InvisibleSpace]" serialTime -> "\[InvisibleSpace]{ 72.4399999999998289`\ Second, 76.`7.6004} \[InvisibleSpace]" parallelTime -> "\[InvisibleSpace]{ 54.6100000000001273`\ Second, 74.`7.5888}\), SequenceForm[ "n -> ", 32, " serialTime -> ", { Times[ 72.439999999999827, Second], 76.}, " parallelTime -> ", { Times[ 54.610000000000127, Second], 74.}], Editable->False]], "Print"], Cell[BoxData[ \({{4, {4.45000000000004547`, 5.`6.4185}, {3.17000000000007275`, 5.`6.4185}}, { 8, {6.76999999999998181`, 7.`6.5647}, {4.60999999999989995`, 8.`6.6227}}, { 16, {17.9200000000000736`, 19.`6.9983}, {12.6600000000000822`, 19.`6.9983}}, { 32, {72.4399999999998289`, 76.`7.6004}, {54.6100000000001273`, 74.`7.5888}}}\)], "Output"] }, Open ]], Cell[BoxData[ \(CloseSlave[p2link]\)], "Input"] }, FrontEndVersion->"X 3.0", ScreenRectangle->{{0, 1280}, {0, 1024}}, WindowSize->{905, 897}, WindowMargins->{{172, Automatic}, {8, Automatic}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1709, 49, 111, 3, 32, "Text"], Cell[1823, 54, 151, 4, 24, "DisplayFormula"], Cell[1977, 60, 175, 5, 32, "Text"], Cell[2155, 67, 64, 1, 27, "Input"], Cell[CellGroupData[{ Cell[2244, 72, 155, 3, 27, "Input"], Cell[2402, 77, 135, 3, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2574, 85, 92, 1, 27, "Input"], Cell[2669, 88, 68, 1, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2774, 94, 969, 17, 443, "Input"], Cell[3746, 113, 92, 1, 27, "Output"], Cell[3841, 116, 175, 3, 23, "Message"], Cell[4019, 121, 173, 3, 23, "Message"] }, Open ]], Cell[4207, 127, 522, 9, 171, "Input"], Cell[4732, 138, 851, 14, 155, "Input"], Cell[CellGroupData[{ Cell[5608, 156, 1608, 28, 363, "Input"], Cell[7219, 186, 184, 3, 23, "Message"], Cell[7406, 191, 186, 3, 23, "Message"], Cell[7595, 196, 176, 3, 23, "Message"], Cell[7774, 201, 161, 3, 23, "Message"] }, Open ]], Cell[7950, 207, 3210, 53, 907, "Input"], Cell[CellGroupData[{ Cell[11185, 264, 127, 3, 27, "Input"], Cell[11315, 269, 97, 2, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11449, 276, 1303, 21, 523, "Input"], Cell[12755, 299, 177, 3, 23, "Message"], Cell[12935, 304, 193, 3, 39, "Message"], Cell[13131, 309, 183, 3, 23, "Message"], Cell[13317, 314, 161, 3, 23, "Message"] }, Open ]], Cell[CellGroupData[{ Cell[13515, 322, 2026, 36, 635, "Input"], Cell[15544, 360, 81, 1, 27, "Output"], Cell[15628, 363, 181, 3, 23, "Message"] }, Open ]], Cell[15824, 369, 270, 4, 91, "Input"], Cell[CellGroupData[{ Cell[16119, 377, 3230, 54, 923, "Input"], Cell[19352, 433, 83, 1, 27, "Output"], Cell[19438, 436, 103, 2, 27, "Output"], Cell[19544, 440, 100, 2, 27, "Output"], Cell[19647, 444, 141, 2, 27, "Output"], Cell[19791, 448, 174, 3, 23, "Message"], Cell[19968, 453, 183, 3, 23, "Message"], Cell[20154, 458, 177, 3, 23, "Message"], Cell[20334, 463, 161, 3, 23, "Message"] }, Open ]], Cell[CellGroupData[{ Cell[20532, 471, 356, 7, 43, "Input"], Cell[20891, 480, 714, 19, 43, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21642, 504, 300, 6, 43, "Input"], Cell[21945, 512, 183, 3, 23, "Message"], Cell[22131, 517, 714, 19, 43, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22882, 541, 178, 3, 27, "Input"], Cell[23063, 546, 130, 3, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23230, 554, 178, 3, 27, "Input"], Cell[23411, 559, 130, 3, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23578, 567, 253, 5, 59, "Input"], Cell[23834, 574, 1500, 40, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25371, 619, 80, 1, 27, "Input"], Cell[25454, 622, 70, 1, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25561, 628, 234, 6, 43, "Input"], Cell[25798, 636, 978, 26, 43, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26813, 667, 182, 5, 27, "Input"], Cell[26998, 674, 183, 3, 23, "Message"], Cell[27184, 679, 977, 26, 43, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28198, 710, 200, 4, 43, "Input"], Cell[28401, 716, 130, 3, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28568, 724, 200, 4, 43, "Input"], Cell[28771, 730, 130, 3, 27, "Output"] }, Open ]], Cell[28916, 736, 836, 16, 91, "Input"], Cell[29755, 754, 213, 4, 43, "Input"], Cell[29971, 760, 143, 3, 27, "Input"], Cell[CellGroupData[{ Cell[30139, 767, 275, 4, 43, "Input"], Cell[30417, 773, 137, 3, 27, "Output"] }, Open ]], Cell[30569, 779, 1115, 18, 251, "Input"], Cell[CellGroupData[{ Cell[31709, 801, 64, 1, 27, "Input"], Cell[31776, 804, 510, 10, 23, "Print"], Cell[32289, 816, 507, 10, 23, "Print"], Cell[32799, 828, 516, 10, 23, "Print"], Cell[33318, 840, 516, 10, 23, "Print"], Cell[33837, 852, 411, 8, 43, "Output"] }, Open ]], Cell[34263, 863, 51, 1, 27, "Input"] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)