Re: Exact real parts
- To: mathgroup at smc.vnet.net
- Subject: [mg31206] Re: Exact real parts
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Fri, 19 Oct 2001 03:11:55 -0400 (EDT)
- References: <9qjjv7$j8i$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Mark: h = Table[1/(i + j - 1), {i, 3}, {j, 3}]; ev=Eigenvalues[h]; ComplexExpand[Re[ev]] {(1/90)*(46 + Sqrt[6559]* Cos[(1/3)*ArcTan[(405*Sqrt[89799])/517148]]), (1/180)*(92 - Sqrt[6559]* (Cos[(1/3)*ArcTan[(405*Sqrt[89799])/517148]] + Sqrt[3]*Sin[(1/3)*ArcTan[(405*Sqrt[89799])/517148]])), (1/180)*(92 + Sqrt[6559]* (-Cos[(1/3)*ArcTan[(405*Sqrt[89799])/517148]] + Sqrt[3]*Sin[(1/3)*ArcTan[(405*Sqrt[89799])/517148]]))} -- Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "DIAMOND Mark R." <dot at dot.dot> wrote in message news:9qjjv7$j8i$1 at smc.vnet.net... > Is it possible to get Mathematica to provide the exact real parts of > something like the 3x3 Hilbert matrix? > > h = Table[1/(i + j - 1), {i, 3}, {j, 3}]; > Eigenvalues[h] > > N and Chop will obviously give their approximations. > > Cheers > -- > Mark R. Diamond > Send email to psy dot uwa dot edu dot au and address to markd > http://www.psy.uwa.edu.au/user/markd > > >