Re: Factorization
- To: mathgroup at smc.vnet.net
- Subject: [mg32209] Re: [mg32205] Factorization
- From: Andrzej Kozlowski <andrzej at tuins.ac.jp>
- Date: Sun, 6 Jan 2002 03:38:24 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
One way: In[1]:= SolveAlways[{x^4 + 5*m^4 == (x^2 + a1*m^2 + b1*x*m)* (x^2 + a2*m^2 + b2*x*m), Modulus == 6}, {x, m}, Mode -> Modular] Out[1]= {{a1 -> 1, a2 -> 5, b1 -> 0, b2 -> 0, Modulus -> 6}, {a1 -> 5, a2 -> 1, b1 -> 0, b2 -> 0, Modulus -> 6}} Andrzej Kozlowski Toyama International University JAPAN http://platon.c.u-tokyo.ac.jp/andrzej/ On Saturday, January 5, 2002, at 02:10 PM, Carlo Gabrieli wrote: > Hi Mathgroup, > > I have to factor in (Z_6,+,x) the following bivariate polynomial > > x^4+[5]*m^4 > > the result is (x^2+[5]*m^2)*(x^2+m^2), but how can I do this with > Mathematica? > > Thanks in Advance > Best Regards > Carlo Gabrieli > snail mail: Carlo Gabrieli > Via San Giovanni d'Acri 15 > 30126 Lido di Venezia (VE) > Tel.& FAX: 011-39-41-5264157 > > e-mail: gabrieli at iuav.it > gabrieli at flux.isdgm.ve.cnr.it > gabrielic at libero.it > gabrielic at inwind.it > > web pages: http://www.omitech.it/MERLIN/conn.htm > > > ========================================================================= > ===== > > "If you can't explain your research to your grandmother, then you > don't understand it yourself" > > Richard Feynman > > > "Update your bumper stickers, kids: Mac OS 8 = Windows 2010" > > David Pogue > > ========================================================================= > ===== > > >