Re: Simple Trigonometric Integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg32370] Re: Simple Trigonometric Integrals
- From: stagat at mrcsb.com (Bob Stagat)
- Date: Wed, 16 Jan 2002 03:30:59 -0500 (EST)
- References: <a20n0a$4i4$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Interesting... consider this... In[17]:=junk=a c Cos[t]/(g s) + b q Cos[2 t]/(c f) +c Cos[3 t]/(d a) + d f Cos[4 t]/(h a n) + e q Cos[5t]/(g a) + f l Cos[6 t]/(w r m) + g b Cos[7 t]/(o n x) + h Sin[t]/(b c) +i Sin[2 t]/(h e r) + j y Sin[3 t]/(l p) + d k Sin[4 t]/(j c) + l m a Sin[5 t]/(f s b h)+ m p Sin[6 t]/(k j) + q n Sin[7 t]/(x c) ; In[18]:=Timing[Integrate[#,{t,0,2\[Pi]}]&/@junk] Out[18]= {0.14 Second,0} In[19]:=Timing[Integrate[junk,{t,0,2\[Pi]}]] Out[19]= {149.49 Second,0} -- Joe Helfand <jhelfand at wam.umd.edu> wrote in message news:<a20n0a$4i4$1 at smc.vnet.net>... <snip> > An example of what I am talking about, just > try the following: > > In[687]:= > Joe = a c Cos[t]/(g s) + b q Cos[2 t]/(c f) + c Cos[3 t]/(d a) + > d f Cos[4 t]/(h a n) + e q Cos[5t]/(g a) + f l Cos[6 t]/(w r m) + > g b Cos[7 t]/(o n x) + h Sin[t]/(b c) + i Sin[2 t]/(h e r) + > j y Sin[3 t]/(l p) + d k Sin[4 t]/(j c) + l m a Sin[5 t]/(f s b h) > + > m p Sin[6 t]/(k j) + q n Sin[7 t]/(x c); > > In[688]:= > Integrate[Joe, {t, 0, 2 Pi}] > > and you willl see it takes a long time to integrate.