Re: Simple Trigonometric Integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg32370] Re: Simple Trigonometric Integrals
- From: stagat at mrcsb.com (Bob Stagat)
- Date: Wed, 16 Jan 2002 03:30:59 -0500 (EST)
- References: <a20n0a$4i4$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Interesting... consider this...
In[17]:=junk=a c Cos[t]/(g s) + b q Cos[2 t]/(c f) +c Cos[3 t]/(d a) +
d f Cos[4 t]/(h a n) + e q Cos[5t]/(g a) + f l Cos[6 t]/(w r m) +
g b Cos[7 t]/(o n x) + h Sin[t]/(b c) +i Sin[2 t]/(h e r) + j y
Sin[3 t]/(l p) + d k Sin[4 t]/(j c) + l m a Sin[5 t]/(f s b h)+ m
p Sin[6 t]/(k j) + q n Sin[7 t]/(x c) ;
In[18]:=Timing[Integrate[#,{t,0,2\[Pi]}]&/@junk]
Out[18]= {0.14 Second,0}
In[19]:=Timing[Integrate[junk,{t,0,2\[Pi]}]]
Out[19]= {149.49 Second,0}
--
Joe Helfand <jhelfand at wam.umd.edu> wrote in message news:<a20n0a$4i4$1 at smc.vnet.net>...
<snip>
> An example of what I am talking about, just
> try the following:
>
> In[687]:=
> Joe = a c Cos[t]/(g s) + b q Cos[2 t]/(c f) + c Cos[3 t]/(d a) +
> d f Cos[4 t]/(h a n) + e q Cos[5t]/(g a) + f l Cos[6 t]/(w r m) +
> g b Cos[7 t]/(o n x) + h Sin[t]/(b c) + i Sin[2 t]/(h e r) +
> j y Sin[3 t]/(l p) + d k Sin[4 t]/(j c) + l m a Sin[5 t]/(f s b h)
> +
> m p Sin[6 t]/(k j) + q n Sin[7 t]/(x c);
>
> In[688]:=
> Integrate[Joe, {t, 0, 2 Pi}]
>
> and you willl see it takes a long time to integrate.