MathGroup Archive 2002

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: memoizing function again

  • To: mathgroup at smc.vnet.net
  • Subject: [mg32505] Re: memoizing function again
  • From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
  • Date: Thu, 24 Jan 2002 05:20:58 -0500 (EST)
  • Organization: Universitaet Leipzig
  • References: <a2lkn5$htb$1@smc.vnet.net>
  • Reply-to: kuska at informatik.uni-leipzig.de
  • Sender: owner-wri-mathgroup at wolfram.com

Hi,

ClearConstantArg[f_Symbol] := 
  DownValues[f] = 
    DownValues[f] /. (Verbatim[HoldPattern][f[_Integer]] :> _) :>
Sequence[]

will do it. For what do wish to use Cases[] ?

Regards
  Jens

Erich Neuwirth wrote:
> 
> i have the following function
> 
> f[x_] /; x <= 2 := f[x] = 1
> f[x_] /; x > 2 := f[x] = f[x - 1] + f[x - 2]
> 
> it remembers what it already calculated
> i want to be able to throw away rules with values
> between calculations
> 
> In[3]=DownValues[f]
> produces
> 
> Out[3]={HoldPattern[f[x_]/;x\[LessEqual]2]\[RuleDelayed](f[x]=1),
>   HoldPattern[f[x_]/;x>2]\[RuleDelayed](f[x]=f[x-1]+f[x-2])}
> 
> after f[4]
> 
> we have
> 
> In[5]:=
> DownValues[f]
> 
> Out[5]=
> {HoldPattern[f[1]]\[RuleDelayed]1,HoldPattern[f[2]]\[RuleDelayed]1,
>   HoldPattern[f[3]]\[RuleDelayed]2,HoldPattern[f[4]]\[RuleDelayed]3,
>   HoldPattern[f[x_]/;x\[LessEqual]2]\[RuleDelayed](f[x]=1),
>   HoldPattern[f[x_]/;x>2]\[RuleDelayed](f[x]=f[x-1]+f[x-2])}
> 
> \[RuleDelayed] is ascii for :>, i think
> 
> so
> 
> DownValues[f] = Take[DownValues[f], -2]
> 
> removes all the rules giving calculated values
> but i would like to throw away the rules following the pattern
> 
> HoldPattern[f[x_Integer]:>y_Integer
> 
> but i have not been able wo write an expression using Cases and a
> pattern
> which gets rid of the rules i want to get rid of
> 
> --
> Erich Neuwirth, Computer Supported Didactics Working Group
> Visit our SunSITE at http://sunsite.univie.ac.at
> Phone: +43-1-4277-38624 Fax: +43-1-4277-9386


  • Prev by Date: Re: memoizing function again
  • Next by Date: Re: Correction on confusion with triple integral...
  • Previous by thread: Re: memoizing function again
  • Next by thread: RE: memoizing function again