RE: Re: calculating the azimuth between two lat/lon's
- To: mathgroup at smc.vnet.net
- Subject: [mg35009] RE: [mg34984] Re: calculating the azimuth between two lat/lon's
- From: "DrBob" <majort at cox-internet.com>
- Date: Wed, 19 Jun 2002 05:52:45 -0400 (EDT)
- Reply-to: <drbob at bigfoot.com>
- Sender: owner-wri-mathgroup at wolfram.com
Here's an updated notebook expression for the azimuth problem. I've
added calculation of distance between points on the Earth's surface, as
well as azimuth (course bearing). A spherical approximation is used in
both cases.
Copy the expression into a notebook and then evaluate the notebook.
Bobby Treat
(* start copying here *)
Notebook[{
Cell[BoxData[{
\(Needs["\<Miscellaneous`CityData`\>"]\), "\n",
\(Needs["\<Calculus`VectorAnalysis`\>"]\), "\[IndentingNewLine]", \
\(Needs["\<LinearAlgebra`Orthogonalization`\>"]\)}], "Input",
InitializationCell->True],
Cell[CellGroupData[{
Cell["Derivation", "Subsubtitle"],
Cell["\<\
Using the Law of Sines and Law of Cosines for spherical triangles, we \
can solve for the azimuth from ptA to ptB.
First we define the a, b, c, A, B, and C as follows:\
\>", "Text"],
Cell[BoxData[{
\(Clear[a, b, c, A, B]\), "\[IndentingNewLine]",
\(info =
TableForm[{{a, "\<arc angle, ptB to north \
(90\[Degree]-latitude)\>"}, {A, "\<angle at ptA (Azimuth)\>"}, {b, \
"\<arc angle, ptA to north (90\[Degree]-latitude)\>"}, {B, "\<angle \
at ptB\>"}, {c, "\<arc angle, ptA to ptB\>"}, {C, "\<angle at \
north\>"}}]\)}], "Input"],
Cell["\<\
The Cosine of an arc angle is the dot product of vectors terminating \
the arc, with each angle in the interval {0, \[Pi]}:\
\>", "Text"],
Cell[BoxData[
\(c \[Equal] ArcCos[ptA . ptB]\)], "Input",
Evaluatable->False],
Cell["Angle C is the difference in longitudes at ptA and ptB:", \
"Text"],
Cell[BoxData[
\(C \[Equal] ArcCos[Cos[p[a] - p[b]]]\)], "Input",
Evaluatable->False],
Cell["The Law of Sines is:", "Text"],
Cell[BoxData[
\(Sin[a]\/Sin[A] \[Equal] Sin[b]\/Sin[B] \[Equal]
Sin[c]\/Sin[C]\)], "Input",
Evaluatable->False],
Cell["Hence the azimuth A satisfies", "Text"],
Cell[BoxData[
\(\(Sin[A] \[Equal] \(Sin[a] Sin[C]\)\/Sin[c];\)\)], "Input",
Evaluatable->False],
Cell["The Law of Cosines at ptA tells us:", "Text"],
Cell[BoxData[
\(Cos[a] \[Equal]
Cos[b] Cos[c] + Sin[b] Sin[c] Cos[A]\)], "Input",
Evaluatable->False],
Cell["from which we can derive", "Text"],
Cell[BoxData[
\(Cos[
A] \[Equal] \(Cos[a] - Cos[b] Cos[c]\)\/\(Sin[b] Sin[c]\)\)], \
"Input",
Evaluatable->False],
Cell["Hence A is determined by", "Text"],
Cell[BoxData[{
\(A \[Equal] ArcTan[Cos[A], Sin[A]]\), "\[IndentingNewLine]",
\(\ \ \ \ \(\(\[Equal]\)\(ArcTan[\(Cos[a] - Cos[b] \
Cos[c]\)\/\(Sin[b] Sin[c]\), \(Sin[a] Sin[C]\)\/Sin[c]]\)\)\), "\
\[IndentingNewLine]",
\(\ \ \ \ \(\(\[Equal]\)\(ArcTan[Cos[a] - Cos[b] Cos[c],
Sin[a] Sin[b], Sin[C]]\)\)\)}], "Input",
Evaluatable->False],
Cell[TextData[{
"The distance from ",
StyleBox["ptA",
FontWeight->"Bold"],
" to ",
StyleBox["ptB",
FontWeight->"Bold"],
" is the spherical radius ",
StyleBox["r",
FontWeight->"Bold"],
" times the arc angle ",
StyleBox["c",
FontWeight->"Bold"],
":"
}], "Text"],
Cell[BoxData[
\(r\ ArcCos[ptA . ptB]\)], "Input",
Evaluatable->False],
Cell["\<\
For the Earth's surface, the radius in miles is approximately\
\>", "Text"],
Cell[BoxData[
\(r = 3959.74\)], "Input",
Evaluatable->False]
}, Open ]],
Cell[CellGroupData[{
Cell["Coordinate Functions", "Subsubtitle"],
Cell["\<\
The following computes a vector in three dimensions from its \
spherical coordinates. t[a] is latitude and p[a] is longitude. All \
input angles are in radians.\
\>", "Text"],
Cell[BoxData[
\(v[a_] := {Cos[t[a]]\ Cos[p[a]], Cos[t[a]]\ Sin[p[a]],
Sin[t[a]]}\)], "Input",
InitializationCell->True],
Cell["\<\
The functions p and t can be computed from latitude and longitude \
data in the CityData format as follows:\
\>", "Text"],
Cell[BoxData[{
\(ClearAll[p, t, north, s]\), "\[IndentingNewLine]",
\(t[{{d_, m_, s_: 0}, {___}}] := \((d + m/60 + s/360)\)
Pi/180.0\), "\[IndentingNewLine]",
\(t[{{d_, m_: 0}, {___}}] := \((d + m/60)\)
Pi/180.0\), "\[IndentingNewLine]",
\(t[{{d_: 0}, {___}}] := d\ Pi/180.0\), "\[IndentingNewLine]",
\(t[name_String] :=
t[CityData[name, CityPosition]]\), "\[IndentingNewLine]",
\(t[{name__String}] :=
t[CityData[{name}, CityPosition]]\), "\[IndentingNewLine]",
\(p[{{___}, {d_, m_, s_: 0}}] := \((d + m/60 + s/360)\)
Pi/180.0\), "\[IndentingNewLine]",
\(p[{{___}, {d_, m_: 0}}] := \((d + m/60)\)
Pi/180.0\), "\[IndentingNewLine]",
\(p[{{___}, {d_: 0}}] := d\ Pi/180.0\), "\[IndentingNewLine]",
\(p[name_String] :=
p[CityData[name, CityPosition]]\), "\[IndentingNewLine]",
\(p[{name__String}] :=
p[CityData[{name}, CityPosition]]\), "\[IndentingNewLine]",
\(\(t["\<north\>"] = Pi/2.0;\)\), "\[IndentingNewLine]",
\(\(p["\<north\>"] = 0.0;\)\), "\[IndentingNewLine]",
\(\(v["\<north\>"] = \(north = {0, 0,
1}\);\)\), "\[IndentingNewLine]",
\(\(north = v["\<north\>"];\)\), "\[IndentingNewLine]",
\(p[{a_, b_, c_}] := N[ArcTan[a, b]]\), "\[IndentingNewLine]",
\(t[{a_, b_, c_}] := N[ArcSin[c]]\), "\[IndentingNewLine]",
\(s[name_String] := {1, Pi/2 - t[name],
p[name]}\), "\[IndentingNewLine]",
\(s[name : {__String}] := {1, Pi/2 - t[name],
p[name]}\), "\[IndentingNewLine]",
\(s[A_, B_, \[Theta]_] :=
v[A]\ Cos[\[Theta]] +
basis[A, B] Sin[\[Theta]]\), "\[IndentingNewLine]",
\(cityName[a_String] := a\), "\[IndentingNewLine]",
\(cityName[{a__String}] := First[{a}]\)}], "Input",
InitializationCell->True],
Cell[BoxData[{
\(\(Unprotect[ArcTan];\)\), "\[IndentingNewLine]",
\(\(ArcTan[0. , 0. ] = 0;\)\), "\[IndentingNewLine]",
\(\(ArcTan[0, 0] = 0;\)\), "\[IndentingNewLine]",
\(\(Protect[ArcTan];\)\)}], "Input",
InitializationCell->True],
Cell[BoxData[{
\(ClearAll[azimuth, distance]\), "\[IndentingNewLine]",
\(azimuth[A_, B_] :=
Module[{ptA, ptB, a, b, c, CC}, \[IndentingNewLine]ptA =
v[A]; \[IndentingNewLine]ptB = v[B]; \[IndentingNewLine]a =
Pi/2 - t[B]; \[IndentingNewLine]b =
Pi/2 - t[A]; \[IndentingNewLine]c =
ArcCos[ptA . ptB]; \[IndentingNewLine]CC =
Mod[p[B] - p[A], 2 Pi, \(-Pi\)]; \[IndentingNewLine]Mod[
ArcTan[\((north .
ptB)\) - \((north . ptA)\) \((ptA . ptB)\),
Sin[a] Sin[b] Sin[CC]], 2. Pi]/
N[Degree]\[IndentingNewLine]]\), "\[IndentingNewLine]",
\(azimuth[A_, Indeterminate] := 0\), "\[IndentingNewLine]",
\(azimuth[Indeterminate, A_] := 0\), "\[IndentingNewLine]",
\(distance[A_, B_] := 3959.74\ ArcCos[v[A] . v[B]]\)}], "Input",
InitializationCell->True]
}, Open ]],
Cell[CellGroupData[{
Cell["Examples from City Data", "Subsubtitle",
InitializationCell->True],
Cell[TextData[{
"From the ",
StyleBox["VNR Concise Encyclopedia of Mathematics, 2nd Edition",
FontWeight->"Bold"],
", page 273, we find that a course from Leningrad (St. Peterburg) \
to San Francisco begins on a heading of N 21.61\[Degree] W and ends \
on a heading of S 13.52\[Degree] W. The distance is given as 5511.5 \
miles."
}], "Text"],
Cell[BoxData[
\(360 -
azimuth["\<St. Peterburg\>", "\<San Francisco\>"]\)], "Input"],
Cell[BoxData[
\(azimuth["\<San Francisco\>", "\<St. Peterburg\>"]\)], "Input"],
Cell[BoxData[
\(distance["\<St. Peterburg\>", "\<San Francisco\>"]\)], \
"Input"],
Cell["\<\
There are 258 cities in the CityData database. To save time on \
slower computers, we'll take a sample of them:\
\>", "Text"],
Cell[BoxData[{
\(\(origin = "\<Dallas\>";\)\), "\n",
\(\(allCities =
CityData[CityPosition];\)\), "\[IndentingNewLine]",
\(count = Length[allCities]\), "\[IndentingNewLine]",
\(indices =
Union[\(Random[Integer, {1, 258}] &\) /@
Range[40], {First[
First[Position[allCities, origin]]]}]\)}], "Input",
InitializationCell->True],
Cell["\<\
The following give azimuth and distance from Dallas to various \
cities:\
\>", "Text"],
Cell[BoxData[{
\(\(pts =
Sort[allCities[\([indices]\)],
OrderedQ[{azimuth[origin, #1],
azimuth[origin, #2]}] &];\)\), "\n",
\(TableForm[\({cityName[#], p[#]/N[Degree], t[#]/N[Degree],
azimuth[origin, #], distance[origin, #]} &\) /@ pts,
TableHeadings \[Rule] {None, {"\<City\>", "\<Longitude\>", \
"\<Latitude\>", "\<Azimuth\>", "\<Miles\>"}}]\)}], "Input",
InitializationCell->True]
}, Open ]]
},
FrontEndVersion->"4.1 for Microsoft Windows",
ScreenRectangle->{{0, 1024}, {0, 711}},
AutoGeneratedPackage->Automatic,
WindowSize->{1016, 673},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
PrintingCopies->1,
PrintingPageRange->{Automatic, Automatic},
ShowCellLabel->False,
Magnification->1.25
]
(* Stop copying here *)
-----Original Message-----
From: rainer gruber [mailto:rainer.gruber at gmx.at]
To: mathgroup at smc.vnet.net
Subject: [mg35009] [mg34984] Re: calculating the azimuth between two lat/lon's
Sorry,
my fault, I "redefined" azimuth. As I found on
<http://aa.usno.navy.mil/data/docs/AltAz.html#Notes> "_Azimuth_ is the
angle along the horizon, with zero degrees corresponding to North, and
increasing in a clockwise fashion".
I posted the angle between the two lines from both points to the center
of the earth.
Rainer Gruber
DrBob wrote:
> I think azimuth is far more complicated than rainer indicated. Copy
the
> following notebook expression into an empty notebook, for a discussion
> of calculation of azimuth, plus examples using the CityData package.
>
> If I've missed the boat somewhere, I'm sure someone will let me know!!
>
> Bobby Treat
>
> ...................