How do I plot this and get their values
- To: mathgroup at smc.vnet.net
- Subject: [mg37907] How do I plot this and get their values
- From: Ashish Ojha <aojha at neuron.cpmc.columbia.edu>
- Date: Tue, 19 Nov 2002 03:51:19 -0500 (EST)
- Organization: Columbia University
- Sender: owner-wri-mathgroup at wolfram.com
I have an equation which has two parts and each equation works for
different times from the same time set(the superscripts te is the time-end
and superscripts ts is time-start).
How do I combine both of them into one plot and see their numerical output
together
Can any one help me?
Ashish
Below are the given details.
FIRST PART
EQU1:= \!\(\*
TagBox[\(\((m\ \((2\ \[ExponentialE]\^\(\(-\[Theta]\_i\)\ t\_k\%e\) -
2\ \[ExponentialE]\^\(\(-\[Theta]\_i\)\ t\_k\%s\) -
\[Theta]\_i\ \ \((t\_k\%e - t\_k\%s)\)\ \((\(-2\) + \[Theta]\_i\
\((t\_k\%e +
t\_k\%s)\))\))\))\)/\((2\ \[Theta]\_i\%3\ \
\((t\_k\%e - t\_k\%s)\))\)\),
DisplayForm]\)
where m = 0.594145
Subscript[\[Theta], i] = 0.15102000585123|
SubsuperscriptBox[t, k, s] = {0, 0.3333, 0.6667, 1.0000}
SubsuperscriptBox[t, k, e] = { 0.3333, 0.6667, 1.0000, 2}
SECOND PART
EQU2:=\!\(\*
TagBox[\(\(1\/\(\[Theta]\_i\ \((t\_k\%e -
t\_k\%s)\)\)\) \((\(A\_1\ \((\((\[ExponentialE]\^\(\(-\
\[Lambda]\_1\)\ t\_k\%e\) - \[ExponentialE]\^\(\(-\[Lambda]\_1\)\ \
t\_k\%s\))\)\ \[Theta]\_i - \[ExponentialE]\^\(\(-ts\)\ \[Lambda]\_1\)\
\((\ \[ExponentialE]\^\(\[Theta]\_i\ \((ts - t\_k\%e)\)\) -
\[ExponentialE]\^\(\ \[Theta]\_i\ \((ts - t\_k\%s)\)\))\)\
\[Lambda]\_1)\)\)\/\(\((\[Theta]\_i - \ \[Lambda]\_1)\)\ \[Lambda]\_1\) +
\(A\_2\ \((\((\[ExponentialE]\^\(\(-\ \[Lambda]\_2\)\ t\_k\%e\) -
\[ExponentialE]\^\(\(-\[Lambda]\_2\)\ \ t\_k\%s\))\)\ \[Theta]\_i -
\[ExponentialE]\^\(\(-ts\)\ \[Lambda]\_2\)\ \((\
\[ExponentialE]\^\(\[Theta]\_i\ \((ts - t\_k\%e)\)\) -
\[ExponentialE]\^\(\ \[Theta]\_i\ \((ts - t\_k\%s)\)\))\)\
\[Lambda]\_2)\)\)\/\(\((\[Theta]\_i - \ \[Lambda]\_2)\)\ \[Lambda]\_2\) +
\(A\_3\ \((\((\[ExponentialE]\^\(\(-\ \[Lambda]\_3\)\ t\_k\%e\) -
\[ExponentialE]\^\(\(-\[Lambda]\_3\)\ \ t\_k\%s\))\)\ \[Theta]\_i -
\[ExponentialE]\^\(\(-ts\)\ \[Lambda]\_3\)\ \((\
\[ExponentialE]\^\(\[Theta]\_i\ \((ts - t\_k\%e)\)\) -
\[ExponentialE]\^\(\ \[Theta]\_i\ \((ts - t\_k\%s)\)\))\)\
\[Lambda]\_3)\)\)\/\(\((\[Theta]\_i - \ \[Lambda]\_3)\)\
\[Lambda]\_3\))\)\),
DisplayForm]\)
where m = 0.594145
Subscript[\[Theta], i] = 0.15102000585123|
Subscript[A,j -> {1, 2, 3}] = {0.0949, 2.163, 0.0005}
Subscript[\[Lambda],j -> {1, 2, 3}] = {0.080,12.664,0.017}
ts = 0.594
SubsuperscriptBox[t, k, s] = {2,3,4,6,8,10,15,20,30,40,50,60,70,80,90,100,110,120}
SubsuperscriptBox[t, k, e] =
{3,4,6,8,10,15,20,30,40,50,60,70,80,90,100,110,120,130}