Re: L2 inner product. Integrate and Conjugate?
- To: mathgroup at smc.vnet.net
- Subject: [mg36330] Re: L2 inner product. Integrate and Conjugate?
- From: phbrf at t-online.de (Peter Breitfeld)
- Date: Mon, 2 Sep 2002 04:08:37 -0400 (EDT)
- References: <akpk8a$s2s$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Andreas Dietrich schrieb: > Hello. > > I am trying to implement the inner product in the space of > complex-valued, square integrable functions over [-1/2,1/2], which can > be expressed in Mathematica code as > > inner[f_Function,g_function]:=Integrate[Conjugate[f[x]]*g[x],{x,-1/2,1/2}] > > This is simple enough. Problem is, Mathematica seamingly cannot > evaluate the Integral for even the simplest of functions: > In[10]:=inner[#&,#&] > > Out[10]:=\!\(\[Integral]\_\(-\(1\/2\)\)\%\(1\/2\)\(x\ Conjugate[ > x]\) \[DifferentialD]x\) > Andreas, Conjugate does not evaluate the expression, if the variables aren't known to be real. Your example (inner[#&,#&]) works if you define your function using ComplexExpand: inner[f_,g_]:=Integrate[ComplexExpand[Conjugate[f[x]]]g[x], ...] You may also use a home-made Conjugate, I'll call it "Konjugiert", eg: ruKonjugiert={Complex[re_,im_]:>Complex[re,-im]}; Konjugiert[ausdr__]:=ausdr /. ruKonjugiert; Replacing Conjugate with Konjugiert in your Definition works for your simple Example, but more komplex functions will need a ComplexExpand to get the wanted real result. Gruß Peter -- =--=--=--=--=--=--=--=--=--=--=--=--=--= http://home.t-online.de/home/phbrf Peter Breitfeld, Bad Saulgau, Germany Meinen GnuPG/PGP-5x Key gibts dort