Re: Bug in Solve?
- To: mathgroup at smc.vnet.net
- Subject: [mg36846] Re: [mg36834] Bug in Solve?
- From: BobHanlon at aol.com
- Date: Sun, 29 Sep 2002 02:55:06 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
In a message dated 9/28/2002 10:57:40 AM, none at news.acns.nwu.edu writes: >inside a program I need to solve this linear equation in terms of p1. >However something odds happens. Sometimes the solution is computed and >sometimes the result is empty [I mean no output...]. Is this a bug of the >solve command or am I doing something wrong? The problem is robust to: >changing name to the variables and other makeups.. > >Thank you very much, > >David > >ps: Sorry for the stupid way in which I copied the command... > > > >Solve[(x^2*((-0.9*x^7*(p^2*(-1 - 5.8*x^6 - 14.010000000000002*x^12 - > 18.04*x^18 - 13.06*x^24 - > 5.040000000000001*x^30 - 0.81*x^36) + > x*(7.777777777777779 - 9.074074074074076*x + > 30.333333333333336*x^6 - > 21.51851851851852*x^7 - > 16.333333333333336*x^8 + > 44.33333333333334*x^12 + > 3.188888888888883*x^13 - > 65.68333333333332*x^14 + > 28.777777777777786*x^18 + > 47.937037037037044*x^19 - > 100.10000000000002*x^20 + 7.*x^24 + > 45.6037037037037*x^25 - > 69.53333333333333*x^26 + > 13.299999999999999*x^31 - > 19.833333333333332*x^32 - > 1.0499999999999996*x^38) + > p*(-6 + 8.296296296296296*x - > 28.799999999999997*x^6 + > 32.785185185185185*x^7 + > 9.333333333333336*x^8 - > 55.260000000000005*x^12 + > 49.04777777777776*x^13 + > 38.38333333333334*x^14 - > 52.980000000000004*x^18 + > 34.20518518518518*x^19 + > 60.20000000000001*x^20 - > 25.380000000000003*x^24 + > 11.736296296296294*x^25 + > 43.63333333333334*x^26 - 4.86*x^30 + > 2.8999999999999986*x^31 + > 13.533333333333333*x^32 + 0.81*x^37 + > 1.0499999999999996*x^38)))/(x + 1.9*x^7 + > 0.9*x^13)^2 - ((-1 + p - 7*x^6 + p*x^6 + > 6*x^7)*(1.2962962962962965 - 3.111111111111112*x^6 >+ > 9.333333333333336*x^7 - 10.111111111111114*x^12 >+ > 22.05*x^13 - 5.703703703703705*x^18 + 17.15*x^19 >+ > 5.483333333333331*x^25 + 1.0499999999999996*x^31 >+ > p1*x^5*(7.000000000000002 - 7.000000000000002*x >+ > 14.000000000000004*x^6 - > 14.000000000000004*x^7 + > 7.000000000000002*x^12 - > 6.999999999999998*x^13) - > 1.166666666666667*p*x^4*x1 - > 3.500000000000001*p*x^10*x1 - > 1.0500000000000003*p*x^11*x1 - > 3.500000000000001*p*x^16*x1 - > 3.150000000000001*p*x^17*x1 - > 1.166666666666667*p*x^22*x1 - > 3.150000000000001*p*x^23*x1 - > 1.0500000000000003*p*x^29*x1))/((1 + 0.9*x^6)^2*(1 >+ > x^6)^2)))/(p^2*(1 + x^6)^3) == 0, p1] > You might find it more robust (and the results cleaner) if you Simplify the equation prior to using Solve. Such as Solve[eqn // Rationalize // Simplify, p1] However, if you are assigning values to p or x prior to using Solve, there may not be a solution. That is, for whenever the numerator of the expression for p1 would be zero, e.g., p = (-6 x^7 + 7 x^6 +1)/(x^6 + 1). Bob Hanlon