Re: To verify Cauchy-Riemann relations in complex variable graphically
- To: mathgroup at smc.vnet.net
- Subject: [mg39212] Re: To verify Cauchy-Riemann relations in complex variable graphically
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Tue, 4 Feb 2003 02:21:14 -0500 (EST)
- Organization: Universitaet Leipzig
- References: <b1idcj$bje$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, Mathematica can't draw transparent surfaces but MathGL3d can Get["MathGL3d`OpenGLViewer`"] MVShow3D[z2r, MVNewScene -> True, MVAlpha -> 0.5]; MVShow3D[z2i, MVAlpha -> 0.5]; you can get MathGL3d from http://phong.informatik.uni-leipzig.de/~kuska/mathgl3dv3/id3.htm Regards Jens "Narasimham G.L." wrote: > > Is it possible to have a semi transparent view of surfaces so that one > may verify slopes by ParametricPlot3D for Cauchy-Riemann relations? > The following is program for 3 functions Z^2, Z^3, Sin[Z].It was > expected to check slopes at the line of intersection of Re and Im parts. > > R1=x^2-y^2 ; I1= 2 x y ; > z2r=Plot3D[R1 , {x,-Pi,Pi},{y,-Pi,Pi} ]; > z2i=Plot3D[I1 , {x,-Pi,Pi},{y,-Pi,Pi} ]; > Show[z2r,z2i] ; 'Top view >> Re,Im Intxn'; > Plot[{x ArcTan[-Sqrt[2]+1],x ArcTan[Sqrt[2]+1]}, {x,-Pi,Pi} ]; > > R3=x^3 - 3 x y^2 ; I3= 3 x^2 y - y ^3 ; > z3r=Plot3D[R3 , {x,-Pi,Pi},{y,-Pi,Pi} ]; > z3i=Plot3D[I3 , {x,-Pi,Pi},{y,-Pi,Pi} ]; > Show[z3r,z3i] ; 'Top view >> Re,Im Intxn'; > Plot[{x,x (-Sqrt[3]+2) , x (-Sqrt[3]-2) }, {x,-Pi,Pi} ]; > > R2=Cosh[y] Sin[x] ; I2=Sinh[y] Cos[x] ; > scr=Plot3D[R2,{x,-Pi/2,Pi/2},{y,-Pi/2,Pi/2}]; > sci=Plot3D[I2,{x,-Pi/2,Pi/2},{y,-Pi/2,Pi/2}]; > Show[scr,sci]; 'Top view >> Re,Im Intxn'; > Plot[{ArcTanh[Tan[x]]},{x,-Pi/2,Pi/2 }]; > -- > Posted via http://web2news.com > To contact in private, remove