Yet another incorrect integral
- To: mathgroup at smc.vnet.net
- Subject: [mg39338] Yet another incorrect integral
- From: Bob Stagat <stagat at mrcsb.com>
- Date: Tue, 11 Feb 2003 04:47:34 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Consider the following integral... Integrate[x^p*E^(-x^2), {x, z, Infinity}] Using the substitution x = t^2 it is easy to show that the answer is half the incomplete gamma function, (1/2)*Gamma[(p + 1)/2, z^2]. However, if I ask Mathematica to do this integral, here's what I get... Integrate[x^p E^(-x^2), {x, z, Infinity}] PowerExpand[%] % /. z -> 0 %% /. z -> Infinity Out[146]= (1/2)*(z^(p + 1)*Gamma[(p + 1)/2, z^2]* (z^2)^((1/2)*(-p - 1)) + Gamma[(p + 1)/2]) Out[147]= (1/2)*(Gamma[(p + 1)/2] + Gamma[(p + 1)/2, z^2]) Out[148]= Gamma[(p + 1)/2] Out[149]= (1/2)*Gamma[(p + 1)/2] This is incorrect. The correct result should be: Out[147]= (1/2)*Gamma[(p + 1)/2, z^2] Out[148]= (1/2)*Gamma[(p + 1)/2] Out[149]= 0 Does anyone understand why Mathematica screws up on such a simple integral? -Bob Stagat- --