Re: yield to maturity
- To: mathgroup at smc.vnet.net
- Subject: [mg41733] Re: [mg41721] yield to maturity
- From: Bobby Treat <drmajorbob+MathGroup3528 at mailblocks.com>
- Date: Tue, 3 Jun 2003 07:13:15 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
For instance,
equation=Sum[ 45/(1 + r)^t , {t, 1, 15}] + 1000/(1 + r)^5 == 913
FindRoot[Evaluate@equation, {r, 0.5}]
{r -> 0.110909}
or (not recommended):
N@Solve[equation, r]
{{r -> 0.11090883131509123},
{r -> -1.8227627192379166 -
0.5982011419966071*I},
{r -> -1.8227627192379166 +
0.5982011419966071*I},
{r -> -1.665701069634478 -
0.19704106767110122*I},
{r -> -1.665701069634478 +
0.19704106767110122*I},
{r -> -1.4252967894188209 -
0.5599944757428127*I},
{r -> -1.4252967894188209 +
0.5599944757428127*I},
{r -> -1.0525585090799867 -
0.7088721229043681*I},
{r -> -1.0525585090799867 +
0.7088721229043681*I},
{r -> -0.6842891145154615 -
0.9669137082950833*I},
{r -> -0.6842891145154615 +
0.9669137082950833*I},
{r -> -0.5969758854730329 -
0.6297008825500814*I},
{r -> -0.5969758854730329 +
0.6297008825500814*I},
{r -> -0.28322629762972196 -
0.3192967143175877*I},
{r -> -0.28322629762972196 +
0.3192967143175877*I}}
Bobby
-----Original Message-----
From: Jonathan Mann <mtheory at msn.com>
To: mathgroup at smc.vnet.net
Subject: [mg41733] [mg41721] yield to maturity
Hi group,
I need to solve for r in an equation of the form:
Sum[I/(1+r)^t, {t,1,n}] + M/(1+r)^n ]==P
For example's sake, let's say:
Solve[ Sum[ 45/(1+r)^t ,{t,1,5}] + 1000/(1+r)^5 == 913, r]
This isn't working out too well. Any ideas?
Thanks,
Jonathan Mann