Re: Solve bug in Mathematica 5
- To: mathgroup at smc.vnet.net
- Subject: [mg44025] Re: Solve bug in Mathematica 5
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Sat, 18 Oct 2003 03:12:16 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <bmodji$hqs$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi,
{0,0,0,0} *is* the correct solution. You should use
Reduce[] and pic up one of the non- zero solutions.
Regards
Jens
Artþras Acus wrote:
>
> Hi,
>
> The following example demonstrates Mathematica 5.0 "improvements"
> in Solve.
>
> lygtys2={E^(a*k*Cot[a*k])*Subscript[A, 1] - Cos[a*k]*Subscript[A, 2] +
> Sin[a*k]*Subscript[B, 2] == 0,
> -(E^(a*k*Cot[a*k])*k*Cot[a*k]*Subscript[A, 1]) -
> k*Sin[a*k]*Subscript[A, 2] -
> k*Cos[a*k]*Subscript[B, 2] == 0, Cos[a*k]*Subscript[A, 2] +
> Sin[a*k]*Subscript[B, 2] -
> E^(a*k*Cot[a*k])*Subscript[B, 3] == 0,
> -(k*Sin[a*k]*Subscript[A, 2]) + k*Cos[a*k]*Subscript[B, 2] -
> E^(a*k*Cot[a*k])*k*Cot[a*k]*Subscript[B, 3] == 0}
>
> Solve[lygtys2, {Subscript[A, 2], Subscript[B, 2], Subscript[B, 3],
> Subscript[A, 1]}]
>
> gives {0,0,0,0}, thought equations are lineary dependent. 4.1 returns
> correct rezult.