problem with the cells in my last NDSolve error post ...
- To: mathgroup at smc.vnet.net
- Subject: [mg43392] problem with the cells in my last NDSolve error post ...
- From: sean kim <shawn_s_kim at yahoo.com>
- Date: Tue, 16 Sep 2003 04:35:42 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
hello group
it appears that yahoo does something with the lines, and the I copied and pasted for the NDsolve
errors isn't properly formatted. I haven't been able to locate the problem. but I think its the
line breaks in yahoo email. im changing the width to 99 which is maximum and see if that fixes the
problem.
so here's goes nothing. let me know if you would like to see my notebook. i could send it as an
attachment( which i think works better...)
\!\(\*
RowBox[{
RowBox[{
RowBox[{"odes", " ", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["b", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(v1 - d1\ b[t] - bi\ k1\ b[t] + k2\ c[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["c", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(bi\ k1\ b[t] - k2\ c[t] - k3\ c[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["d", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k3\ c[t] - k4\ d[t]\ e[t] + k5\ f[t] + k6\ f[t] -
k7\ d[t]\ i[t] + k8\ j[t] - k12\ d[t]\ k[t] + k13\ l[t]\)}],
",",
RowBox[{
RowBox[{
SuperscriptBox["f", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k4\ d[t]\ e[t] - k5\ f[t] - k6\ f[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["j", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k7\ d[t]\ i[t] - k8\ j[t] - k9\ j[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["p", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(v2 - d2\ p[t] - k19\ o[t]\ p[t] + k20\ q[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["n", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(v7 - d7\ n[t] - k17\ m[t]\ n[t] + k18\ o[t] -
k23\ n[t]\ s[t] + k24\ t[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["t", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k23\ n[t]\ s[t] - k24\ t[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["h", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(v6 - d6\ h[t] - k10\ h[t]\ i[t] + k11\ k[t] +
k22\ q[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["k", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k10\ h[t]\ i[t] - k11\ k[t] - k12\ d[t]\ k[t] +
k13\ l[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["l", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k12\ d[t]\ k[t] - k13\ l[t] - k14\ l[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["u", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(v3 - d3\ u[t] - k25\ m[t]\ u[t] + k26\ v[t] +
k27\ v[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["e", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(v4 - d4\ e[t] - k15\ e[t] - k4\ d[t]\ e[t] + k5\ f[t] -
k28\ e[t]\ i[t] + k16\ w[t] + k29\ x[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["w", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k15\ e[t] + k27\ v[t] - k16\ w[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["g", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k6\ f[t] - k15\ g[t] + k16\ m[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["m", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k15\ g[t] - k16\ m[t] - k17\ m[t]\ n[t] + k18\ o[t] -
k25\ m[t]\ u[t] + k26\ v[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["o", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k17\ m[t]\ n[t] - k18\ o[t] - k19\ o[t]\ p[t] +
k20\ q[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["q", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k19\ o[t]\ p[t] - k20\ q[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["v", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k25\ m[t]\ u[t] - k26\ v[t] - k27\ v[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["x", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k28\ e[t]\ i[t] - k29\ x[t] - k30\ x[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["s", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(v8 - d8\ s[t] - k23\ n[t]\ s[t] + k24\ t[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["i", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(v5 - d5\ i[t] - k7\ d[t]\ i[t] - k28\ e[t]\ i[t] -
k10\ h[t]\ i[t] + k8\ j[t] + k9\ j[t] + k11\ k[t] +
k14\ l[t] + k29\ x[t] + k30\ x[t]\)}], ",",
RowBox[{
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
"==", \(k21\ q[t]\)}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]", \(ics\ = \ {b[0] == v1/d1, p[0] == v2/d2,
u[0] == v3/d3,
w[0] == \((d5\ k15\ \((k29 + k30)\)\ v4)\)/\((k16\ \((d4\ d5\ k29 +
d4\ d5\ k30 + k28\ k30\ v5)\))\),
t[0] == \(k23\ v7\ v8\)\/\(d7\ d8\ k24\),
k[0] == \(k10\ v5\ v6\)\/\(d5\ d6\ k11\),
x[0] == \(k28\ v4\ v5\)\/\(d4\ d5\ k29 + d4\ d5\ k30 + k28\ k30\ v5\
\), n[0] == v7\/d7, h[0] == v6\/d6, s[0] == v8\/d8,
e[0] == \(d5\ \((k29 + k30)\)\ v4\)\/\(d4\ d5\ k29 + d4\ d5\ k30 + \
k28\ k30\ v5\), i[0] == v5\/d5, c[0] == 0, d[0] == 0, f[0] == 0, j[0] == 0,
q[0] == 0, g[0] == 0, m[0] == 0, l[0] == 0, o[0] == 0, v[0] == 0,
r[0] == 0};\), "\[IndentingNewLine]",
"\[IndentingNewLine]", \(vars\ = \ {b[t], c[t], d[t], f[t], j[t], p[t],
n[t], t[t], h[t], k[t], l[t], u[t], e[t], w[t], g[t], m[t], o[t],
q[t], v[t], x[t], s[t], i[t], r[t]};\), "\[IndentingNewLine]",
"\[IndentingNewLine]", \(For[\ ii\ = \ 1, \
ii < 5, \ \[IndentingNewLine]np = \ {k1 -> \ \((Random[
Real, \ {1, \ 10}])\)*\
10^\ \((Random[Integer, \ {4, \ 8}])\),
k2\ -> \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[
Integer, \ {\(-7\), \ \(-4\)}])\), \ \
\[IndentingNewLine]k3 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {1, \ 3}])\), \
k4 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[
Integer, \ {5, \
8}])\), \ \[IndentingNewLine]k5 -> \ \((Random[
Real, \ {1, \ 10}])\)*10^\ \((Random[
Integer, \ {\(-4\), \ \(-1\)}])\), \
k6 -> \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[
Integer, \ {1, \
2}])\)\ , \[IndentingNewLine]k7 -> \ \((Random[
Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {1, \ 3}])\)\ , \
k8 -> \ \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\((Random[
Integer, \ {\(-7\), \ \(-4\)}])\), \[IndentingNewLine]k9 \
-> \ \((Random[Real, \ {19, \ 10}])\)*\
10^\((Random[Integer, \ {\(-6\), \ \(-3\)}])\),
k10 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[
Integer, \ {1, \
3}])\), \ \ \[IndentingNewLine]k11 -> \ \((Random[
Real, \ {1, \ 10}])\)\ *\
10^\((Random[Integer, \ {\(-7\), \ \(-4\)}])\),
k12 -> \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[
Integer, \ {1, \
3}])\), \ \[IndentingNewLine]k13 -> \((Random[
Real, \ {1, \ 10}])\)\ *\
10^\((Random[Integer, \ {\(-7\), \ \(-4\)}])\),
k14 -> \ \ \((Random[Real, \ {1, \ 10}])\)*\
10^\((Random[
Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]k15 \
-> \ \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[Integer, \ {\(-4\), \ \(-1\)}])\), \
k16 -> \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[Integer, \ {\(-4\), \ \(-1\)}])\), \
k17 -> \ \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {2, \ 5}])\)\ , \
k18 -> \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[
Integer, \ {\(-7\), \ \(-4\)}])\)\ , \
\[IndentingNewLine]k19 -> \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {3, \ 6}])\)\ , \
k20 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\((Random[
Integer, \ {\(-8\), \ \(-5\)}])\)\ , \ \
\[IndentingNewLine]k21 -> \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {1, \ 3}])\),
k22\ -> \((Random[Real, \ {1, \ 10}])\)\ *\
10^\((Random[
Integer, \ {1, \
3}])\), \ \[IndentingNewLine]k23 -> \ \((Random[
Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {3, \ 6}])\)\ , \
k24 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {\(-7\), \ \(-4\)}])\)\ , \
k25 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {3, \ 6}])\), \
k26 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[
Integer, \ {\(-7\), \ \(-5\)}])\)\ , \ \
\[IndentingNewLine]k27 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {1, \ 4}])\)\ , \
k28 -> \ \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {1, \ 3}])\), \
k29 -> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[Integer, \ {\(-7\), \ \(-4\)}])\), \
k30 -> \ \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[Integer, \ {\(-6\), \ \(-3\)}])\),
v1 -> \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[Integer, \ {\(-12\), \ \(-9\)}])\),
d1 -> \ \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[
Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v2 \
-> \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[Integer, \ {\(-10\), \ \(-8\)}])\),
d2 -> \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[
Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v3 \
-> \((Random[Real, \ {1, \ 10}])\)*\
10^\((Random[Integer, \ {\(-11\), \ \(-8\)}])\), \
d3 -> \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[
Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v4 \
-> \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[Integer, \ {\(-10\), \ \(-8\)}])\),
d4 -> \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[Integer, \ {\(-6\), \ \(-3\)}])\),
v5 -> \((Random[Real, \ {1, \ 10}])\)*\
10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\),
d5 -> \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[
Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v6 \
-> \((Random[Real, \ {1, \ 10}])\)*\
10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\),
d6 -> \ \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[
Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v7 \
-> \ \((Random[Real, \ {1, \ 10}])\)*\
10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\),
d7 -> \ \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[
Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]v8 \
-> \ \((Random[Real, \ {1, \ 10}])\)*\
10^\((Random[Integer, \ {\(-10\), \ \(-8\)}])\), \
d8 -> \ \((Random[Real, \ {1, \ 10}])\)*\
10^\ \((Random[
Integer, \ {\(-6\), \ \(-3\)}])\), \[IndentingNewLine]bi \
-> \ \((Random[Real, \ {1, \ 10}])\)\ *\
10^\ \((Random[
Integer, \ {\(-10\), \(-5\)}])\)}; \[IndentingNewLine]\
\[IndentingNewLine]nics\ = \ ics /. \ np; \[IndentingNewLine]nodes = \
odes /. \ np; \[IndentingNewLine]Join[nodes, \
nics]; \[IndentingNewLine]Print["\< iteration = \>", ii\ , \ np, \
nics\ ]; \[IndentingNewLine]\[IndentingNewLine]soln\ = \
NDSolve[\ Join[nodes, \ nics], \ vars, \ {t, \ 0, \ 100000},
MaxSteps -> 1000000]; \[IndentingNewLine]\[IndentingNewLine]pb = \
Plot[Evaluate[b[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> b, \
DisplayFunction -> Identity]; \[IndentingNewLine]pc\ = \ \ Plot[
Evaluate[c[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> c,
DisplayFunction -> Identity]; \[IndentingNewLine]pd\ = \
Plot[Evaluate[c[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> d,
DisplayFunction -> Identity]; \[IndentingNewLine]pf\ = \
Plot[Evaluate[f[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> f,
DisplayFunction -> Identity]; \[IndentingNewLine]pj = \
Plot[Evaluate[j[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> j,
DisplayFunction -> Identity]; \[IndentingNewLine]pp\ = \
Plot[Evaluate[p[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> p,
DisplayFunction -> Identity]; \[IndentingNewLine]pn\ = \
Plot[Evaluate[n[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> n,
DisplayFunction -> Identity]; \[IndentingNewLine]pt\ = \
Plot[Evaluate[t[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> t,
DisplayFunction -> Identity]; \[IndentingNewLine]ph\ = \
Plot[Evaluate[h[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> h,
DisplayFunction -> Identity]; \[IndentingNewLine]pk\ = \
Plot[Evaluate[k[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> k,
DisplayFunction -> Identity]; \[IndentingNewLine]pl = \
Plot[Evaluate[l[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> l,
DisplayFunction -> Identity]; \[IndentingNewLine]pu\ = \
Plot[Evaluate[u[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> u,
DisplayFunction -> Identity]; \[IndentingNewLine]pe = \
Plot[Evaluate[e[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> e,
DisplayFunction -> Identity]; \[IndentingNewLine]pw\ = \
Plot[Evaluate[w[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> w,
DisplayFunction -> Identity]; \[IndentingNewLine]pg\ = \
Plot[Evaluate[g[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> g,
DisplayFunction -> Identity]; \[IndentingNewLine]pm\ = \
Plot[Evaluate[m[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> m,
DisplayFunction -> Identity]; \[IndentingNewLine]po\ = \
Plot[Evaluate[o[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> o,
DisplayFunction -> Identity]; \[IndentingNewLine]pq\ = \
Plot[Evaluate[q[t] /. \ soln], {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> q,
DisplayFunction -> Identity]; \[IndentingNewLine]pv\ = \
Plot[Evaluate[v[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> v,
DisplayFunction -> Identity]; \[IndentingNewLine]px\ = \
Plot[Evaluate[x[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> x,
DisplayFunction -> Identity]; \[IndentingNewLine]ps\ = \
Plot[Evaluate[s[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> s,
DisplayFunction -> Identity]; \[IndentingNewLine]pi\ = \
Plot[Evaluate[i[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> i,
DisplayFunction -> Identity]; \[IndentingNewLine]pr\ = \
Plot[Evaluate[r[t] /. \ soln], \ {t, \ 0, \ 100000}, \
PlotRange -> Automatic, \ PlotLabel -> r, \
DisplayFunction ->
Identity]; \[IndentingNewLine]\[IndentingNewLine]Show[
GraphicsArray[{{pb, pc, \ pd, pf}, {\ pj, pp, pn, pt}, \ {ph, pk, pl,
pu}, {pe\ , pw\ , \ pg, pm}, {po\ , pq\ , pv\ , \ px}\ , \ {ps,
pi, \ pr\ }}, \
ImageSize -> \
750]]; \[IndentingNewLine]\[IndentingNewLine]Share[]; \
\[IndentingNewLine]\(ii++\)]\)}]\)
=====
when riding a dead horse, some dismount.
while others...
write memoirs on the subject of riding a dead horse.
__________________________________
Do you Yahoo!?
The New Yahoo! Search - Faster. Easier. Bingo.
http://search.yahoo.com