Re: Help with a summation
- To: mathgroup at smc.vnet.net
- Subject: [mg53170] Re: [mg53150] Help with a summation
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Mon, 27 Dec 2004 06:41:46 -0500 (EST)
- References: <200412250900.EAA18567@smc.vnet.net> <3EBCF74E-57BB-11D9-9B3E-000A95B4967A@mimuw.edu.pl>
- Sender: owner-wri-mathgroup at wolfram.com
One more thing just came to my mind. This identity looks very much like some of the identities in Chapter 5 of Knuth's "Concrete Mathematics" and ought to be provable using techniques described there. Andrzej On 27 Dec 2004, at 12:56, Andrzej Kozlowski wrote: > Unfortunately Mathematica seems unable to prove this identity in > general. At least the best I have been able to do with it is to verify > the identity for a given pair of integers n and k, with n> k and for > arbitrary S. > > First we slightly redefine your functions, using a singe function name: > > PS[n_, k_, S_, S_] = > FullSimplify[ > Sum[(1/(j + 1))*Binomial[ > n - 1, j]*(1/S)^j* > (1 - 1/S)^(n - 1 - j), > {j, k, n - 1}], > {s > 0, S > 0, n > 0}]; > > > PS[n_, k_, 1, S_] = FullSimplify[ > Sum[(Binomial[n - 1, k - i]*(1 - 1/S)^(k - i)* > (1/S)^(i - k + n - 1))/(i - k + n), {i, 0, k}], > {s > 0, S > 0, n > 0}]; > > > PS[n_, k_, s_, S_] = FullSimplify[ > Sum[(Binomial[n - 1, k - i]*(1 - s/S)^(k - i)* > Binomial[(n - 1) - (k - i), j]*(1/S)^j* > ((s - 1)/S)^((n - 1) - (k - i) - j))/(j + 1), > {i, 0, k}, {j, i, n - 1}], {s > 0, S > 0, n > 0}]; > > Mathematica usually expresses such sums in terms of generalised > functions, when it can find the sums, which is in the case of the > first and second definition above but not in the third. > > PS[n,k,S,S]//InputForm > > > ((-1 + S)^(-1 - k + n)*S^(1 - n)*Gamma[n]* > Hypergeometric2F1Regularized[1, 1 + k - n, 2 + k, > (1 - S)^(-1)])/Gamma[-k + n] > > > PS[n,k,s,S]//InputForm > > Sum[((-1 + s)^(-1 + i - j - k + n)*S^(1 - n)* > (-s + S)^(-i + k)*Gamma[n])/(Gamma[2 + j]* > Gamma[1 - i + k]*Gamma[i - j - k + n]), {i, 0, k}, > {j, i, -1 + n}] > > Let's now define the function we would like to prove is zero: > > f[n_, k_, S_] := Sum[PS[n, k, p, S], {p, 1, S}] - S/n > > We can use it to numerically verify your claim for a symbolic S. This > works even without using FullSimplify: > > f[#,Random[Integer,{1,10}],S]&/@Range[20,30] > > > {0,0,0,0,0,0,0,0,0,0,0} > > Unfortunately using FullSimplify on f does not help: > > In[10]:= > FullSimplify[f[n, k, S], > (k | n | S) $B":(B Integers && > n > k && n > 0 && k > 0 && > S > 0] > > Out[10]= > -(S/n) + Sum[ > ((-1 + p)^(-1 + i - j - k + > n)*S^(1 - n)*(-p + S)^ > (-i + k)*Gamma[n])/ > (Gamma[2 + j]*Gamma[ > 1 - i + k]*Gamma[ > i - j - k + n]), > {p, 1, S}, {i, 0, k}, > {j, i, -1 + n}] > > > All we get is the identity to be proved in a somewhat different form. > What's worse is that using FullSimplify with a numerical S and > arbitrary n and k gives an error: > > > FullSimplify[h[n, k, S] /. S -> 10, > (k | n) $B":(B Integers && n > k && n > 0 && > k > 0] > > Infinite expression 1/0 encountered. > > Indeterminate > > The same happens with f instead of h. > > > Andrzej Kozlowski > Chiba, Japan > http://www.akikoz.net/~andrzej/ > http://www.mimuw.edu.pl/~akoz/ > > > > > > > On 25 Dec 2004, at 18:00, m.elhaddad at gmail.com wrote: > >> Hi All, >> >> I'm trying to use mathematica to verify the value of a summation. It >> runs for a long time without returning a solution. I'm not sure my >> input to Mathematica is in the proper form. >> >> I'm including the mathematica cell expressions below. There I define >> three functions >> PS(N,k,s,S): defined for 1<s<S >> PS1(N,k,S): defined at s=1, and >> PSS(N,k,S): defined at s = S. >> >> Each of these functions is a summation. I'd like to verify that >> for any k,N, and S>2: PS1+PSS+sum_{2<s<S}PS = S/N, which seems to be >> a >> correct by numerical evaluation. >> >> Doing it by hand appears to be beyond my reach. I'd appreciate your >> help whether you can see that it holds (or not), or know how to get >> mathematica to work it out. >> >> Thanks, >> --MH >> >> These are the four cell expressions: >> >> Cell[BoxData[ >> RowBox[{ >> RowBox[{"PS", "[", >> RowBox[{"N_", ",", "k_", ",", "s_", ",", "S_"}], "]"}], " ", >> ":=", >> " ", >> RowBox[{ >> UnderoverscriptBox["\[Sum]", >> RowBox[{"i", "=", "0"}], "k"], >> RowBox[{"(", " ", >> RowBox[{ >> UnderoverscriptBox["\[Sum]", >> RowBox[{"j", "=", "i"}], >> RowBox[{"N", "-", "1"}]], >> RowBox[{"(", >> RowBox[{ >> FractionBox["1", >> RowBox[{"j", "+", "1"}]], " ", >> RowBox[{"Binomial", "[", >> RowBox[{ >> RowBox[{"N", "-", "1"}], ",", >> RowBox[{"k", "-", "i"}]}], "]"}], " ", >> SuperscriptBox[ >> RowBox[{"(", >> RowBox[{"1", "-", >> FractionBox["s", "S"]}], ")"}], >> RowBox[{"k", "-", "i"}]], >> RowBox[{"Binomial", "[", >> RowBox[{ >> RowBox[{ >> RowBox[{"(", >> RowBox[{"N", "-", "1"}], ")"}], "-", >> RowBox[{"(", >> RowBox[{"k", "-", "i"}], ")"}]}], ",", "j"}], >> "]"}], " ", >> SuperscriptBox[ >> RowBox[{"(", >> FractionBox["1", "S"], ")"}], "j"], " ", >> SuperscriptBox[ >> RowBox[{"(", >> FractionBox[ >> RowBox[{"s", "-", "1"}], "S"], ")"}], >> RowBox[{ >> RowBox[{"(", >> RowBox[{"N", "-", "1"}], ")"}], "-", >> RowBox[{"(", >> RowBox[{"k", "-", "i"}], ")"}], "-", "j"}]]}], >> ")"}]}], ")"}]}]}]], "Input"] >> >> Cell[BoxData[ >> RowBox[{ >> RowBox[{"PS1", "[", >> RowBox[{"N_", ",", "k_", ",", "S_"}], "]"}], " ", ":=", " ", >> RowBox[{ >> UnderoverscriptBox["\[Sum]", >> RowBox[{"i", "=", "0"}], "k"], >> RowBox[{"(", >> RowBox[{ >> RowBox[{"Binomial", "[", >> RowBox[{ >> RowBox[{"N", "-", "1"}], ",", >> RowBox[{"k", "-", "i"}]}], "]"}], " ", >> SuperscriptBox[ >> RowBox[{"(", >> RowBox[{"1", "-", >> FractionBox["1", "S"]}], ")"}], >> RowBox[{"k", "-", "i"}]], " ", >> FractionBox["1", >> RowBox[{"N", "-", "k", "+", "i"}]], " ", >> SuperscriptBox[ >> RowBox[{"(", >> FractionBox["1", "S"], ")"}], >> RowBox[{"N", "-", "1", "-", "k", "+", "i"}]]}], " ", >> ")"}]}]}]], "Input"] >> >> Cell[BoxData[ >> RowBox[{ >> RowBox[{"PSS", "[", >> RowBox[{"N_", ",", "k_", ",", "S_"}], "]"}], " ", ":=", " ", >> >> RowBox[{ >> UnderoverscriptBox["\[Sum]", >> RowBox[{"j", "=", "k"}], >> RowBox[{"N", "-", "1"}]], >> RowBox[{"(", >> RowBox[{ >> FractionBox["1", >> RowBox[{"j", "+", "1"}]], " ", >> RowBox[{"Binomial", "[", >> RowBox[{ >> RowBox[{"N", "-", "1"}], ",", "j"}], "]"}], " ", >> SuperscriptBox[ >> RowBox[{"(", >> FractionBox["1", "S"], ")"}], "j"], " ", >> SuperscriptBox[ >> RowBox[{"(", >> RowBox[{"1", "-", >> FractionBox["1", "S"]}], ")"}], >> RowBox[{"N", "-", "1", "-", "j"}]]}], >> ")"}]}]}]], "Input"] >> >> Cell[BoxData[ >> RowBox[{"FullSimplify", "[", >> RowBox[{ >> RowBox[{ >> RowBox[{"PS1", "[", >> RowBox[{"N", ",", "k", ",", "S"}], "]"}], "+", >> RowBox[{"PSS", "[", >> RowBox[{"N", ",", "k", ",", "S"}], "]"}], "+", >> RowBox[{ >> UnderoverscriptBox["\[Sum]", >> RowBox[{"s", "=", "2"}], "S"], >> RowBox[{"PS", "[", >> RowBox[{"N", ",", "k", ",", "s", ",", "S"}], "]"}]}]}], >> ",", " ", >> RowBox[{"S", ">", "2"}]}], "]"}]], "Input", >> CellLabel->"In[6]:="] >> >> >> >
- References:
- Help with a summation
- From: m.elhaddad@gmail.com
- Help with a summation