Re: 3D Pascal's Triangle (Cone?)
- To: mathgroup at smc.vnet.net
- Subject: [mg49575] Re: 3D Pascal's Triangle (Cone?)
- From: "Roger L. Bagula" <rlbtftn at netscape.net>
- Date: Fri, 23 Jul 2004 06:01:47 -0400 (EDT)
- References: <200407211814.i6LIELN23030@proapp.mathforum.org> <cdnq13$l3v$1@smc.vnet.net>
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
typo: extra "}" in the cuboid:
g=Flatten[Table[If
Mod[Multinomial[x,y,x],2]==1,Cuboid[1.2*{x,y,-z}],{}],{x,0,15},{y.0,15},{z,0,15}]
Show[Graphics3D[g]]
Roger L. Bagula wrote:
> There is and old Visualization in Mathematica that
> gives a modulo 2 version of a Pascal's triangle.
> It is a right angle version of a tetrahedral 3d Sierpiski triangle.
> Here it is: ( copyright Mathematica):
>
> g=Flatten[Table[If
> Mod[Multinomial[x,y,x],2]==1,Cuboid[1.2*{x,y,-z}}],{}],{x,0,15},{y.0,15},{z,0,15}]
> Show[Graphics3D[g]]
>
> phil wrote:
>
>>Is there a three dimensional version of Pascal's
>>triangle? If so, I suppose it would be a cone (?).
>>Applications?
>>
>>phil
>>
>
>
>
--
Respectfully, Roger L. Bagula
tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel:
619-5610814 :
URL : http://home.earthlink.net/~tftn
URL : http://victorian.fortunecity.com/carmelita/435/
- Follow-Ups:
- Re: Re: 3D Pascal's Triangle (Cone?)
- From: DrBob <drbob@bigfoot.com>
- Re: Re: 3D Pascal's Triangle (Cone?)