Re: subtract a list of interpolating functions from another
- To: mathgroup at smc.vnet.net
- Subject: [mg48580] Re: subtract a list of interpolating functions from another
- From: sean_incali at yahoo.com (sean kim)
- Date: Sat, 5 Jun 2004 07:19:58 -0400 (EDT)
- References: <c9pfod$t27$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi Paul,
Thanks for the reply.
I can't seem to get your suggestion to work. It brings back lotta
plotting error. so I looked at,
Evaluate[(Subtract@@@stepde)/.ndsolstep]
Evaluate[(Subtract@@@nostepdes)/.ndsol]
first one brings back,
{0.05 InterpolatingFunction[{{0.,400.}},<>][t]
InterpolatingFunction[{{0.,400.}},<>][t]+ b'[t],
0.1 a0[t] InterpolatingFunction[{{0., 400.}}, <>][t] -
0.05\InterpolatingFunction[{{0., 400.}}, <>][t]
InterpolatingFunction[{{0., 400.}}, <>][t] + x'[t],
-0.1 a0[t] InterpolatingFunction[{{0., 400.}}, <>][t] + 0.05
\InterpolatingFunction[{{0., 400.}}, <>][t]
InterpolatingFunction[{{0., 400.}}, <>][t] + y'[t]}
It doesn't look like they are evaluated...
same thing for
What is Subtract@@@stepde supposed to do up there?
thank you so much for any thoguhts.
sean
below is the code that was ran.
k1 = 0.1;
k2 = 0.05;
a0[t_]:= 0.5/; t< 0 ;
a0[t_]:= 0.5/;0 <= t<=20 ;
a0[t_]:= 0.5/; 20<=t<= 60 ;
a0[t_]:= 0.5/; 60<=t<= 400;
a=0.5;
stepde = {b'[t]== -k2 b[t] y[t], x'[t]== -k1 a0[t] x[t] + k2 b[t]
y[t], y'[t]== k1 a0[t] x[t] - k2 b[t] y[t]};
nostepde = {b'[t]== -k2 b[t] y[t], x'[t]== -k1 a x[t] + k2 b[t] y[t],
y'[t]== k1 a x[t] - k2 b[t] y[t]};
ndsolstep = NDSolve[ Join[stepde, { b[0] == 1, x[0] == 1, y[0] ==
0}], {b[t], x[t], y[t]}, {t, 0,0,20, 60, 400,400},
Method->ExplicitRungeKutta][[1]] ;
ndsol = NDSolve[Join[ nostepde, {b[0] == 1, x[0] == 1, y[0] == 0}],
{b[t], x[t], y[t]}, {t, 0,400}][[1]] ;
SetOptions[Plot,PlotRange -> All];
Evaluate[(Subtract@@@stepde)/.ndsolstep]
Evaluate[(Subtract@@@nostepdes)/.ndsol]
Plot[Evaluate[(Subtract@@@stepde)/.ndsolstep],{t,0,400}]
Plot[Evaluate[(Subtract@@@nostepdes)/.ndsol],{t,0,400}]
--- Paul Abbott <paul at physics.uwa.edu.au> wrote:
> In article <c9pfod$t27$1 at smc.vnet.net>,
> sean_incali at yahoo.com (sean kim) wrote:
>
> > still stepwise ode accuracy related question,
> but...
> >
> > consider two lists of three interpolating
> functions.
> >
> > like below.
> >
> > k1 = 1/10; k2 = 1/20;
> >
> > a0[t_] := 0.5 /; t < 0 ;
> > a0[t_] := 0.5 /; 0 <= t <=20 ;
> > a0[t_] := 0.5 /; 20 <= t <=60 ;
> > a0[t_] := 0.5 /; 60 <= t <=400;
> >
> > a = 0.5;
> >
> > ndsolstep = NDSolve[{ b'[t] == -k2 b[t] y[t],
> x'[t] == -k1 a0[t] x[t]
> > + k2 b[t] y[t], y'[t] == k1 a0[t] x[t] - k2 b[t]
> y[t], b[0] == 1,
> > x[0] == 1, y[0] == 0}, {b, x, y}, {t, 0, 0, 20,
> 60, 400, 400}, Method
> > -> ExplicitRungeKutta][[1]]
> >
> > ndsol = NDSolve[{ b'[t] == -k2 b[t] y[t], x'[t] ==
> -k1 a x[t] + k2
> > b[t] y[t], y'[t] == k1 a x[t] - k2 b[t] y[t],
> b[0] == 1, x[0] == 1,
> > y[0] == 0}, {b, x, y}, {t, 0, 400}][[1]]
> >
> >
> > will give two lists of
> >
> > {b -> InterpolatingFunction[{{0., 400.}}, <>],
> > x -> InterpolatingFunction[{{0., 400.}}, <>],
> > y -> InterpolatingFunction[{{0., 400.}}, <>]}
> >
> > one from normal system and another from stepwise
> defined( which has
> > Rob Knapp's fix in it) they should be same if not
> very close.
>
> And they are.
>
> > I thought maybe I would take a value of
> interpolating function at time
> > poiints and subtract to see the differences. (to
> check how close they
> > are)
>
> Instead, why not just substitute the solutions back
> into the
> differential equations (Mathematica knows how to
> compute derivatives of
> InterpolatingFunctions) and see how well they are
> satisfied:
>
> des = {b'[t] == -k2 b[t] y[t], x'[t] == -k1 a0[t]
> x[t] + k2 b[t] y[t],
> y'[t] == k1 a0[t] x[t] - k2 b[t] y[t]};
>
> SetOptions[Plot, PlotRange -> All];
>
> Plot[Evaluate[(Subtract @@@ des) /. ndsolstep],
> {t, 0, 400}];
>
> Plot[Evaluate[(Subtract @@@ des) /. ndsol], {t, 0,
> 400}];
>
> Cheers,
> Paul
>
> --
> Paul Abbott Phone:
> +61 8 9380 2734
> School of Physics, M013 Fax:
> +61 8 9380 1014
> The University of Western Australia (CRICOS
> Provider No 00126G)
> 35 Stirling Highway
> Crawley WA 6009
> mailto:paul at physics.uwa.edu.au
> AUSTRALIA
> http://physics.uwa.edu.au/~paul
>