Re: Infrequent Mathematica User
- To: mathgroup at smc.vnet.net
- Subject: [mg47055] Re: Infrequent Mathematica User
- From: bobhanlon at aol.com (Bob Hanlon)
- Date: Mon, 22 Mar 2004 22:39:10 -0500 (EST)
- References: <c3mfek$r7l$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
f[x_,y_,z_]:=x/(1+x^2)+y/(1+x^2+y^2)+z/(1+x^2+y^2+z^2);
eqns = Thread[Simplify[
D[f[x,y,z],#]& /@ {x,y,z}]==0];
FindRoot[eqns,{{x,1},{y,1},{z,1}}]
{x -> 0.6096239644159589, y -> 0.8626792159182006,
z -> 1.4545985039066525}
NSolve[eqns, {x,y,z}]
{{x -> -1.1504610099495616, y -> 2.389556579417945,
z -> -2.8343502221238883}, {x -> 1.1504610099495591,
y -> -2.3895565794179503, z -> 2.8343502221238954},
{x -> -0.8844004241635046, y -> -2.0927346690454693,
z -> 2.4822776849670647}, {x -> 0.8844004241635126,
y -> 2.0927346690454627, z -> -2.482277684967057},
{x -> 3.4547344369933075, y -> -2.649204308160977,
z -> -4.4669311049675535}, {x -> -3.454734436993219,
y -> 2.6492043081608667, z -> 4.466931104967412},
{x -> -0.6096239644159579, y -> -0.8626792159182,
z -> -1.4545985039066518}, {x -> 0.6096239644159587,
y -> 0.8626792159181986, z -> 1.4545985039066525}}
Bob Hanlon
In article <c3mfek$r7l$1 at smc.vnet.net>, "Jim Dars" <jim-dars at comcast.net>
wrote:
<< f is a defined below as a function of x, y, and z.
I wish to take the partials set to zero and solve the 3 equations for x, y,
and z.
I've copied from Mathematica and had to clean up the paste, a bit. I used
the partial symbol from the palette to define my partial derivatives. The 3
lines on this page look nothing like what I feed Mathematica.
I've tried the "Solve equation" with just "a" and a[x_,y_,z_] etc.
Mathematica replies {{}}.
I sure would appreciate some advice.
Thanks, Best wishes, Jim
Jim-Dars at comcast.net
f[x_, y_, z_] =
x/(1 + x^2) + y/(1 + x^2 + y^2) +
z/(1 + x^2 + y^2 + z^2);
a[x_, y_, z_] = \[PartialD]\_x f;\)\[IndentingNewLine]
b[x_, y_, z_] = \[PartialD]\_y f;\)\[IndentingNewLine]
c[x_, y_, z_] = \[PartialD]\_z\ f;\)\[IndentingNewLine]
Solve[{a[x_, y_, z_] == 0, b[x_, y_, z_] == 0, c[x_, y_, z_] == 0}, {x, y,
z}]
>><BR><BR>