Re: Integration of piecewise function
- To: mathgroup at smc.vnet.net
- Subject: [mg52481] Re: [mg52463] Integration of piecewise function
- From: DrBob <drbob at bigfoot.com>
- Date: Mon, 29 Nov 2004 01:22:28 -0500 (EST)
- References: <200411280606.BAA06619@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
ecks[x_] = UnitStep[x] - 2*UnitStep[x - 2] + UnitStep[x - 4];
Integrate[ecks[x], {x, -Infinity, Infinity}]
0
or (with version 5.1):
ecks[x_] = Piecewise[{{1, 0 < x < 2}, {-1, 2 < x < 4}}];
Integrate[ecks[x], {x, -Infinity, Infinity}]
0
Bobby
On Sun, 28 Nov 2004 01:06:46 -0500 (EST), Riccardo <ricky at nospam.it> wrote:
> <inviati & spediti>
>
> I just defined a function like this:
>
> X[\[Omega]_] := 0 /; \[Omega] < 0;
> X[\[Omega]_] := 1 /; 0 < \[Omega] < 2;
> X[\[Omega]_] := -1 /; 2 < \[Omega] < 4;
> X[\[Omega]_] := 0 /; \[Omega] > 4;
>
> Is it possible now to integrate it from -infinity to +infinity? I've
> already tried and it doesn't give me the result.
> Thanks.
>
> Luca
>
>
>
>
--
DrBob at bigfoot.com
www.eclecticdreams.net
- References:
- Integration of piecewise function
- From: Riccardo <ricky@nospam.it>
- Integration of piecewise function