Re: Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- To: mathgroup at smc.vnet.net
- Subject: [mg50625] Re: [mg50617] Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- From: Andrzej Kozlowski <andrzej at akikoz.net>
- Date: Wed, 15 Sep 2004 01:49:17 -0400 (EDT)
- References: <200409130619.CAA14342@smc.vnet.net>
- Reply-to: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Sender: owner-wri-mathgroup at wolfram.com
On 13 Sep 2004, at 15:19, peteraptaker wrote:
> *This message was transferred with a trial version of CommuniGate(tm)
> Pro*
> Have I missed something - my apologies if this is answered in a FAQ
> I want to make the simple Re and Im parts simplify properly?
>
> test =
> {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}
>
> FullSimplify[test, eta > 1]
> gives*{Sqrt[-1 + eta^2], 0}
>
> But
> FullSimplify[test, eta < 1]
> gives
> {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}
>
> Needs["Algebra`ReIm`"] does not seem to help
>
> Real numbers demonstrate what should happen:
> test) /. {{eta -> 0.1}, {eta -> 2}}
> {{0., 0.99498743710662}, {Sqrt[3], 0}}
>
>
There is nothing really strange here, Mathematica simply can't give a
single simple expression that would cover all the cases that arise. So
you have to split it yourself, for example:
FullSimplify[test, eta < -1]
{Sqrt[eta^2 - 1], 0}
FullSimplify[test, eta == -1]
{0, 0}
FullSimplify[test, -1 < eta < 1]
{0, Sqrt[1 - eta^2]}
FullSimplify[test, eta == 1]
{0, 0}
FullSimplify[test, 1 <= eta]
{Sqrt[eta^2 - 1], 0}
or, you can combine everything into just two cases:
FullSimplify[test, eta $B":(B Reals && Abs[eta] < 1]
{Re[Sqrt[eta^2 - 1]], Im[Sqrt[eta^2 - 1]]}
FullSimplify[test, eta $B":(B Reals && Abs[eta] >= 1]
{Sqrt[eta^2 - 1], 0}
In fact you do not really need FullSimplify, simple Simplify will do
just as well.
Andrzej Kozlowski
Chiba, Japan
http://www.akikoz.net/~andrzej/
http://www.mimuw.edu.pl/~akoz/
- References:
- Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- From: psa@laplacian.co.uk (peteraptaker)
- Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]