Re: NMinimize--problem with a min-max problem
- To: mathgroup at smc.vnet.net
- Subject: [mg55765] Re: NMinimize--problem with a min-max problem
- From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
- Date: Tue, 5 Apr 2005 06:10:47 -0400 (EDT)
- Organization: Uni Leipzig
- References: <d2tfro$qpe$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi,
fun1[z_?NumericQ] := fun1[z] = NMaximize[{(
Log[x] + 4/3 z Log[
y])/(2 (3/4 + z)), x > 0, y > 0, x + y == 1}, {x,
y}][[1]]
NMinimize[fun1[z], z]
gives several waring messages, because the result
of fun1[] is not always a number, but you get a
result.
Regards
Jens
"David" <isolanoster at gmail.com> schrieb im
Newsbeitrag news:d2tfro$qpe$1 at smc.vnet.net...
> Hello,
>
> I'm trying to solve numerically the following
> problem:
>
> min{z}max{y,x} f{x,y,z}
>
> I first do the maximization:
>
> fun1[z_] := NMaximize[{(
> Log[x] + 4/3 z Log[
> y])/(2 (3/4 + z)), x > 0, y > 0, x + y ==
> 1}, {x, y}][[1]]
>
> I can plot fun1[z] (the solution is at
> z=.75,x=y=1/2) however NMinimize
> does accept the definition of fun1[z] as:
>
> NMinimize[fun1[z], z]
>
> yields error.
>
> Any suggestion?
>
> Thank you in advance,
>
> David
>
- Follow-Ups:
- Re: Re: NMinimize--problem with a min-max problem
- From: "Janos D. Pinter" <jdpinter@hfx.eastlink.ca>
- Re: Re: NMinimize--problem with a min-max problem