legend scaling
- To: mathgroup at smc.vnet.net
- Subject: [mg54446] legend scaling
- From: Chris Chiasson <chris.chiasson at gmail.com>
- Date: Sun, 20 Feb 2005 00:10:48 -0500 (EST)
- Reply-to: Chris Chiasson <chris.chiasson at gmail.com>
- Sender: owner-wri-mathgroup at wolfram.com
Dear MathGroup,
Below, I have attached code that is part of one of my homework
assignments in my powertrain class. The code contains all input
statements up to and including a graph I am working on. I mapped
steady state 100% throttle engine power to top gear vehicle speed for
different drivetrain configurations. I superimposed the road load
power onto the same graph. My concern is with the legend below the
graph. If I change the ImageSize->600 argument in the last command,
the legend box becomes larger or smaller. How do I make sure that no
matter what size I choose for the ImageSize, that the legend always
stays nicely wrapped around the legend text? Thank you in advance for
your valuable time.
EngineTorqueVsEngineSpeedData=
Transpose[{# 2\[Pi]/60 (rad)/s&/@{1000,1400,2100,2800,3500,4200,4900,5300,
5700},{61.0,67.6,73.7,78.5,80.9,77.3,76.2,73.3,68.7} kg m^2/s^2/
rad}];
EnginePowerVsEngineSpeedData={#1,#1 #2}&[Sequence@@#]&/@
EngineTorqueVsEngineSpeedData;
EnginePowerVsEngineSpeed=
MapAt[Evaluate,(Interpolation[{#1 (rad/s)^-1,#2 (kg m^2/s^3)^-1}&[
Sequence@@#]&/@
EnginePowerVsEngineSpeedData][# (rad/s)^-1]kg m^2/s^3&),1];
DrivelineEfficiency[TransmissionReductionRatio_]=
1-(0.06+TransmissionReductionRatio^1.5/100);
FinalDriveReductionRatio=(*Interval[{Min[#],Max[#]}&@Rationalize[*){2.95,3.55,
3.73}(*]]*);
RollingRadius=(*Interval[*){300/1000 ,310/1000}(*]*) m;
RollingResistanceCoefficient=0.015;
CoefficientOfDrag=0.335;
Area=2 m^2;
g=9.81 m/s^2;
CurbWeight=g 1350 kg;
AirDensity=100000/(286.9*298.15) (kg/m^3);
RoadLoadPower=
Function[{CarSpeed,GradeAngle},
CarSpeed*(1/2*AirDensity*CarSpeed^2*CoefficientOfDrag*Area+
RollingResistanceCoefficient*CurbWeight*Cos[GradeAngle]+
CurbWeight*Sin[GradeAngle])];
N[DesiredTopSpeed=140 km/h*1000 m/km/(3600 s/h)];
Outer[Times,RollingRadius,
1/rad/TransmissionReductionRatio/FinalDriveReductionRatio];
CarSpeed=Outer[Times,RollingRadius,
EngineSpeed/rad/TransmissionReductionRatio/FinalDriveReductionRatio];
CarSpeedAtTopEngineSpeed=
CarSpeed/.EngineSpeed->EngineTorqueVsEngineSpeedData[[-1,1]];
TypeBTopSpeedDifference=DesiredTopSpeed-CarSpeedAtTopEngineSpeed;
LastGearReductionRatioSolution=
Map[Solve[# ==0,TransmissionReductionRatio][[1]]&,
TypeBTopSpeedDifference,{2}];
DisplayLastGearReductionRatio=
Array[junk,Drop[Dimensions[LastGearReductionRatioSolution],-1]+1];
DisplayLastGearReductionRatio[[
Sequence@@(Range[
2,#]&/@(Drop[
Dimensions[LastGearReductionRatioSolution],-1]+1))]]=
TransmissionReductionRatio/.LastGearReductionRatioSolution;
DisplayLastGearReductionRatio[[Range[2,#]&[Length[RollingRadius]+1],1]]=
RollingRadius;
DisplayLastGearReductionRatio[[1,
Range[2,#]&[Length[FinalDriveReductionRatio]+1]]]=
FinalDriveReductionRatio;
DisplayLastGearReductionRatio[[1,1]]="4th Gear";
TableForm[DisplayLastGearReductionRatio//N,
TableHeadings\[Rule]{{"Rolling","","Radius"},{"Final","Drive","Reduction",
"Ratio"}}]
TopGearNVRatio=
EngineTorqueVsEngineSpeedData[[-1,1]]/
CarSpeedAtTopEngineSpeed/.TransmissionReductionRatio\[Rule]1;
Needs["Graphics`MultipleListPlot`"]
MultipleListPlot[
Append[#,Level[#,{Length@Dimensions@#}-1]&@
ReplaceAll[#,Line[pts_]\[RuleDelayed]List/@pts]&@
First@Block[{$DisplayFunction=Identity},
ReleaseHold[#]]&@
Hold[Plot[
RoadLoadPower[CarSpeed*1000 m/(3600 s),0]/.kg m^2/s^3->
W/.W->1/1000,{CarSpeed,0,160}]]]&@
Level[#,{2}]&@(#/.kg m^2/s^3->W/.W->1/1000/.{m\[Rule]1/1000,
s\[Rule]1/3600}/.TransmissionReductionRatio\[Rule]1)&@
Map[ReleaseHold@
ReplacePart[Function[{CarSpeedDummyVariable},Null],
Apply[{Hold[CarSpeedDummyVariable/.EngineSpeed\[Rule]#1],
DrivelineEfficiency[TransmissionReductionRatio] #2}&,
EnginePowerVsEngineSpeedData,{1}],2],CarSpeed,{2}],
PlotJoined\[Rule]True,
SymbolShape\[Rule]Append[#,None]&@
Take[#,Length[RollingRadius]*
Length[FinalDriveReductionRatio]]&@
Apply[PlotSymbol[#1,Filled\[Rule]#2]&,#,{1}]&@Flatten[#,1]&@
Outer[List,{Box,Diamond,Star,Triangle},{True,False}],
PlotLegend\[Rule]Append[#,"Road Load"]&@
Level[Outer[
"Rolling Radius: "<>ToString[#1/.m\[Rule]100 cm]<>
", Final Drive Reduction Ratio: "<>ToString[#2]&,RollingRadius,
FinalDriveReductionRatio],{2}],ImageSize\[Rule]600,
LegendSize\[Rule]{1.6,0.5},LegendPosition\[Rule]{-.75,-1.25},
LegendSpacing\[Rule]-.3,LegendTextSpace\[Rule]Automatic,
AxesLabel\[Rule]{"Speed (kph)","Power (kW)"},
PlotLabel->"Top Gear Power Curves and Road Load"]
Regards,
--
Chris Chiasson
Kettering University
Mechanical Engineering
Graduate Student
1 810 265 3161
- Follow-Ups:
- Re: legend scaling
- From: Chris Chiasson <chris.chiasson@gmail.com>
- Re: legend scaling