Re: Re: nonlinear differential equation
- To: mathgroup at smc.vnet.net
- Subject: [mg54699] Re: [mg54647] Re: nonlinear differential equation
- From: DrBob <drbob at bigfoot.com>
- Date: Sun, 27 Feb 2005 01:29:34 -0500 (EST)
- References: <cvhequ$qft$1@smc.vnet.net> <200502250618.BAA02402@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
Yikes!!! Good luck inverting the functions involved.
Off[Solve::verif, Solve::tdep]
deqn = Derivative[2][s][t] -
a*s[t]^2 - b*s[t] - c == 0;
ddeqn =
((Integrate[#1, t] & ) /@
Expand[Derivative[1][s][t]*
#1] & ) /@ deqn
s /. DSolve[{%}, s, t]
(-c)*s[t] - (1/2)*b*s[t]^2 -
(1/3)*a*s[t]^3 +
(1/2)*Derivative[1][s][t]^
2 == 0
{Function[{t}, InverseFunction[
(I*EllipticF[I*ArcSinh[
(2*Sqrt[3]*Sqrt[
c/(3*b + Sqrt[9*b^2 -
48*a*c])])/Sqrt[#1]],
-((3*b + Sqrt[9*b^2 -
48*a*c])/(-3*b +
Sqrt[9*b^2 - 48*a*
c]))]*Sqrt[
1 - (12*c)/((-3*b +
Sqrt[9*b^2 - 48*a*c])*
#1)]*Sqrt[
1 + (12*c)/((3*b +
Sqrt[9*b^2 - 48*a*c])*
#1)]*#1)/(Sqrt[3]*
Sqrt[c/(3*b + Sqrt[
9*b^2 - 48*a*c])]*
Sqrt[6*c + 3*b*#1 +
2*a*#1^2]) & ][
-(t/Sqrt[3]) + C[1]]],
Function[{t}, InverseFunction[
(I*EllipticF[I*ArcSinh[
(2*Sqrt[3]*Sqrt[
c/(3*b + Sqrt[9*b^2 -
48*a*c])])/Sqrt[#1]],
-((3*b + Sqrt[9*b^2 -
48*a*c])/(-3*b +
Sqrt[9*b^2 - 48*a*
c]))]*Sqrt[
1 - (12*c)/((-3*b +
Sqrt[9*b^2 - 48*a*c])*
#1)]*Sqrt[
1 + (12*c)/((3*b +
Sqrt[9*b^2 - 48*a*c])*
#1)]*#1)/(Sqrt[3]*
Sqrt[c/(3*b + Sqrt[
9*b^2 - 48*a*c])]*
Sqrt[6*c + 3*b*#1 +
2*a*#1^2]) & ][
t/Sqrt[3] + C[1]]]}
Bobby
On Fri, 25 Feb 2005 01:18:45 -0500 (EST), Jens-Peer Kuska <kuska at informatik.uni-leipzig.de> wrote:
> Hi,
>
> deqn = s''[t] - a*s[t]^2 - b*s[t] - c == 0;
>
> ddeqn=Integrate[#, t] & /@ Expand[s'[t]*#] & /@ deqn
>
> gives you a nonlinear first order equation and DSolve[] can express the
>
> solution in InverseFunction[] of elliptic integrals.
>
> Regards
>
> Jens
>
> "Umby" <umprisco at unina.it> schrieb im Newsbeitrag
> news:cvhequ$qft$1 at smc.vnet.net...
>> hi group,
>>
>> could anyone help me in solving the following nonlinear differential
>> equation:
>> s''[t] - a1s[t]^2 - b1 s[t] - c1 = 0
>> s[0] = 0, s'[0] = v0
>>
>> is it possible to solve it?
>>
>> thanks
>> -u
>>
>>
>
>
>
>
>
--
DrBob at bigfoot.com
www.eclecticdreams.net
- References:
- Re: nonlinear differential equation
- From: "Jens-Peer Kuska" <kuska@informatik.uni-leipzig.de>
- Re: nonlinear differential equation