Re: Function Fitting To 3D Data
- To: mathgroup at smc.vnet.net
- Subject: [mg53663] Re: Function Fitting To 3D Data
- From: "Astanoff" <astanoff at yahoo.fr>
- Date: Sat, 22 Jan 2005 03:51:43 -0500 (EST)
- References: <csl1jv$6ue$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Assuming a linear fitting, this is the way I would do it :
In[1]:=
data={{3,2,13.9},{3,5,13.4},{3,10,12.3},{12,1,15.6},
{24,2,16.0},{60,5,14.1},{120,10,13.0},{240,20,11.7}};
ff[x_,y_]=Fit[data,{1,x,y},{x,y}];
alldata=
Flatten[Table[If[MemberQ[data[[All,{1,2}]],{x,y}],
First@Cases[data,{x,y,_}],{x,y,ff[x,y]}],
{x,1,240},
{y,1,20}],1];
f=Interpolation[alldata]
Out[4]=
InterpolatingFunction[{{1.,240.},{1.,20.}},<>]
In[5]:=f[1,1]
Out[5]=15.0536
In[6]:=f[3,2]
Out[6]=13.9
In[7]:=f[3,4]
Out[7]=14.0519
In[8]:=f[3,5]
Out[8]=13.4
In[9]:=f[240,20]
Out[9]=11.7
hth
Valeri
- Follow-Ups:
- Re: Re: Function Fitting To 3D Data
- From: DrBob <drbob@bigfoot.com>
- Re: Re: Function Fitting To 3D Data