 
 
 
 
 
 
Re: Interaction of Sum/Plus and KroneckerDelta
- To: mathgroup at smc.vnet.net
- Subject: [mg55261] Re: Interaction of Sum/Plus and KroneckerDelta
- From: Maxim <ab_def at prontomail.com>
- Date: Thu, 17 Mar 2005 03:31:27 -0500 (EST)
- References: <d192un$ngm$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
On Wed, 16 Mar 2005 10:48:55 +0000 (UTC), Ofek Shilon <ofek at simbionix.com>  
wrote:
> I'm fighting Mathematica 5.1.0 to perform a (seemingly) elementary
> simplification, and Mathematica - so far - wins, so i thought i'd
> consult some veterans.
> Here's a simplified example of the problem.
>
> type:
> Sum[KroneckerDelta[i, j], {i, 1, 5}]
>
> and you get:
> KroneckerDelta[1, j] + KroneckerDelta[2, j] +
>   KroneckerDelta[3, j] + KroneckerDelta[4, j] + KroneckerDelta[5, j]
>
> which i want to simplify to 1.  The direct approach:
> Simplify[%, Assumptions -> {j  Integers, 0 < j < 3}]
>
> still gives:
> KroneckerDelta[1, j] + KroneckerDelta[2, j]
>
> Can Mathematica somehow automatically transform this to 1?
> modification of the original sum are welcome too, of course.
>
>   thanks for any ideas,
>
>     Ofek Shilon
>
You might want to try PiecewiseSum from
http://library.wolfram.com/infocenter/MathSource/5117/ . As mentioned in  
piecewise.nb, sometimes the best way is to evaluate a sum with symbolic  
limits and substitute numerical values later:
In[51]:=
s = PiecewiseSum[KroneckerDelta[i, j], {i, n}]
Out[51]=
If[1 <= j && j <= n, 1 - Ceiling[j] + Floor[j], 0]
In[52]:=
Refine[s /. n -> 5, Element[j, Integers] && 0 < j < 3]
Out[52]=
1
Or even
In[53]:=
Refine[s, Element[{j, n}, Integers] && 0 < j < n + 1]
Out[53]=
1
A more convoluted way would be to do
In[54]:=
Simplify[
   Refine[Sum[KroneckerDelta[i, j], {i, 5}], #]& /@
     Reduce[Element[j, Integers] && 0 < j < 3]]
Out[54]=
1
Finally, you can rewrite the sum as
In[55]:=
Sum[DiscreteDelta[i - j], {i, n}]
Out[55]=
UnitStep[-1 + j]*UnitStep[-j + n]
but notice that the result is correct only for integer j (PiecewiseSum  
gives a result identical to s).
Maxim Rytin
m.r at inbox.ru

