Re: Bug with Limit, Series and ProductLog ?
- To: mathgroup at smc.vnet.net
- Subject: [mg61426] Re: Bug with Limit, Series and ProductLog ?
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Wed, 19 Oct 2005 02:16:05 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <dj26kc$bc7$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
did wrote: > With Mathematica 5.2 Windows I obtain > > In[1]:=Limit[ ProductLog[Exp[a/x]/x]-a/x,x->0] > Out[1]= -Log[a] > > which seems correct. But, setting a=1, I get > > In[2]:=Limit[ ProductLog[Exp[1/x]/x]-1/x,x->0] > Out[2]=-8 > > which is inconsistent with the previous result > (except if Log[1] is Infinity !). > > Worse, with Series I get > > In[3]:=Series[ ProductLog[Exp[a/x]/x]-a/x,{x,0,5}] > > Out[3]=\!\(\* > InterpretationBox[ > RowBox[{\(-\(a\/x\)\), "+", "Indeterminate", "+", > InterpretationBox[\(O[x]\^6\), > SeriesData[ x, 0, {}, -1, 6, 1], > Editable->False]}], > SeriesData[ x, 0, { > Times[ -1, a], Indeterminate}, -1, 6, 1], > Editable->False]\) > > Setting a=1 in the Series gives a complex answer. > > How can I workaround the problem and get the correct > expansion for In[3]? > Thanks, > D. > No bug here. What result do you expect since the limit from the right is indeterminate of the form infinity - infinity and it is negative infinity from the left? In[1]:= expr = ProductLog[Exp[a/x]/x] - a/x Out[1]= -(a/x) + ProductLog[E^(a/x)/x] In[2]:= Limit[expr, x -> 0, Assumptions -> a > 0] Out[2]= -Infinity In[3]:= Limit[expr, x -> 0, Direction -> -1, Assumptions -> a > 0] Out[3]= -Infinity In[4]:= Limit[expr, x -> 0, Direction -> 1, Assumptions -> a > 0] Out[4]= Limit[-(a/x) + ProductLog[E^(a/x)/x], x -> 0, Direction -> 1, Assumptions -> a > 0] In[5]:= Limit[-a/x, x -> 0, Direction -> 1, Assumptions -> a > 0] Out[5]= Infinity In[6]:= Limit[ProductLog[Exp[a/x]/x], x -> 0, Direction -> 1, Assumptions -> a > 0] Out[6]= -Infinity In[7]:= Limit[-a/x, x -> 0, Direction -> -1, Assumptions -> a > 0] Out[7]= -Infinity In[8]:= Limit[ProductLog[Exp[a/x]/x], x -> 0, Direction -> -1, Assumptions -> a > 0] Out[8]= 25/12 + a - Log[a] Regards, /J.M.