 
 
 
 
 
 
Re: Bug with Limit, Series and ProductLog ?
- To: mathgroup at smc.vnet.net
- Subject: [mg61426] Re: Bug with Limit, Series and ProductLog ?
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Wed, 19 Oct 2005 02:16:05 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <dj26kc$bc7$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
did wrote:
> With Mathematica 5.2 Windows I obtain
> 
> In[1]:=Limit[ ProductLog[Exp[a/x]/x]-a/x,x->0]
> Out[1]= -Log[a]
> 
> which seems correct. But, setting a=1, I get
> 
> In[2]:=Limit[ ProductLog[Exp[1/x]/x]-1/x,x->0]
> Out[2]=-8
> 
> which is inconsistent with the previous result
> (except if Log[1] is Infinity !).
> 
> Worse, with Series I get
> 
> In[3]:=Series[ ProductLog[Exp[a/x]/x]-a/x,{x,0,5}]
> 
> Out[3]=\!\(\*
>   InterpretationBox[
>     RowBox[{\(-\(a\/x\)\), "+", "Indeterminate", "+",
>       InterpretationBox[\(O[x]\^6\),
>         SeriesData[ x, 0, {}, -1, 6, 1],
>         Editable->False]}],
>     SeriesData[ x, 0, {
>       Times[ -1, a], Indeterminate}, -1, 6, 1],
>     Editable->False]\)
> 
> Setting a=1 in the Series gives a complex answer.
> 
> How can I workaround the problem and get the correct
> expansion for In[3]?
> Thanks,
> D.
> 
No bug here.
What result do you expect since the limit from the right is 
indeterminate of the form infinity - infinity and it is negative 
infinity from the left?
In[1]:=
expr = ProductLog[Exp[a/x]/x] - a/x
Out[1]=
-(a/x) + ProductLog[E^(a/x)/x]
In[2]:=
Limit[expr, x -> 0, Assumptions -> a > 0]
Out[2]=
-Infinity
In[3]:=
Limit[expr, x -> 0, Direction -> -1, Assumptions -> a > 0]
Out[3]=
-Infinity
In[4]:=
Limit[expr, x -> 0, Direction -> 1, Assumptions -> a > 0]
Out[4]=
Limit[-(a/x) + ProductLog[E^(a/x)/x], x -> 0, Direction -> 1, 
Assumptions -> a > 0]
In[5]:=
Limit[-a/x, x -> 0, Direction -> 1, Assumptions -> a > 0]
Out[5]=
Infinity
In[6]:=
Limit[ProductLog[Exp[a/x]/x], x -> 0, Direction -> 1, Assumptions -> a > 0]
Out[6]=
-Infinity
In[7]:=
Limit[-a/x, x -> 0, Direction -> -1, Assumptions -> a > 0]
Out[7]=
-Infinity
In[8]:=
Limit[ProductLog[Exp[a/x]/x], x -> 0, Direction -> -1, Assumptions -> a > 0]
Out[8]=
25/12 + a - Log[a]
Regards,
/J.M.

