Re: smooth eigenvalues and eigenvectors as a function of frequency
- To: mathgroup at smc.vnet.net
- Subject: [mg60318] Re: smooth eigenvalues and eigenvectors as a function of frequency
- From: "Antonio Carlos Siqueira" <acsl at dee.ufrj.br>
- Date: Tue, 13 Sep 2005 06:06:52 -0400 (EDT)
- References: <dg05rf$a1u$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Dear Group
There were some mistakes in the code I presented here yesterday.
Here goes the correct one.
Thanks and sorry if this has caused any problem
Antonio
<<Graphics`Graphics`
SetOptions[{LogLinearListPlot,LogLogListPlot},Axes\[Rule]False,Frame\[Rule]\
True,PlotJoined\[Rule]
True,ImageSize\[Rule]450,DefaultFont\[Rule]{"
Helvetica",14},PlotStyle\[Rule]{AbsoluteThickness[2]}];
xc={-9.5,-9.5,-9.5,9.5,9.5,9.5};
yc={26.,38.7,51.4,26.,38.7,51.4};
ncond=Length[xc];
compr=25*10^3;
rf=0.0203454;
rhoc=4.169134020401465*^-8;
rhosolo=100.0;
mu=(4.*Pi)/10^7;
epsilon=8.854/10^12;
freqlog[i_,f_,n_]:=Table[N[10^(i+(x*(f-i))/(Floor[n]-1))],{x,0,n-1}]
length=25000;
npontos=20;
d1=0;d2=6;
ndecadas=d2-d1;
nfd=ndecadas*npontos;
f=freqlog[d1,d2,nfd];
nf=Length[f];
evalues=Table[0,{n,1,nf}];
evectors=evalues;
Do[{w=2*Pi*f[[nm]],
p=Sqrt[rhosolo/(I*w*mu)],
etac=Sqrt[(I*w*mu)/rhoc],
Z=Table[If[iâ? j,((I*w*mu)*Log[
Sqrt[(xc[[i]]-xc[[j]])^2+(2*p+yc[[i]]+yc[[j]])^2]/
Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2]])/(2*Pi),
((etac*rhoc)*BesselI[0,etac*rf])/
((2*Pi*rf)*BesselI[1,etac*rf])+
((I*w*mu)*Log[(2*p+2*yc[[i]])/rf])/(2*Pi)],
{i,1,ncond},{j,1,ncond}],
P=Table[If[iâ? j,Log[Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]+yc[[j]])^2]/
Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2]],
Log[(2.*yc[[i]])/rf]],
{i,1,ncond},{j,1,ncond}],
Y=I*w*2*Pi*epsilon*Inverse[P],
{evalues[[nm]],evectors[[nm]]}=Eigensystem[Z.Y]},{nm,1,nf}]
DisplayTogether[
LogLinearListPlot[Transpose[{f,Re[evectors[[All,3,1]]]}]],
LogLinearListPlot[Transpose[{f,Re[evectors[[All,3,2]]]}]],
LogLinearListPlot[Transpose[{f,Re[evectors[[All,3,3]]]}]],
LogLinearListPlot[Transpose[{f,Re[evectors[[All,3,4]]]}]],PlotRange\[Rule]All]