Re: Symmetric polynomials
- To: mathgroup at smc.vnet.net
- Subject: [mg69012] Re: [mg68940] Symmetric polynomials
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 26 Aug 2006 02:05:00 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Needs["Algebra`SymmetricPolynomials`"];
P=y1^2 y2 y3+y1 y2^2 y3+y1 y2 y3^2+
y1^2 y2 y4+y1 y2^2 y4+y1^2 y3 y4+
y2^2 y3 y4+y1 y3^2 y4+y2 y3^2 y4+
y1 y2 y4^2+y1 y3 y4^2+y2 y3 y4^2;
var=Union[Cases[P,_Symbol,Infinity]]
{y1,y2,y3,y4}
s=Table[ToExpression["s"<>ToString[n]],{n,Length[var]}]
{s1,s2,s3,s4}
ps=SymmetricReduction[P,var,s][[1]]
s1 s3-4 s4
S=Table[ToExpression["S"<>ToString[n]],{n,Length[var]}]
{S1,S2,S3,S4}
eqns=Thread[S==(
SymmetricReduction[#,var,s][[1]]&/@
Table[Total[var^n],{n,4}])]
{S1 == s1, S2 == s1^2 - 2*s2, S3 == s1^3 - 3*s2*s1 + 3*s3,
S4 == s1^4 - 4*s2*s1^2 + 4*s3*s1 + 2*s2^2 - 4*s4}
Simplify[ps/.Solve[eqns,s][[1]]]
(S2*S1^2)/2 - S3*S1 - S2^2/2 + S4
Simplify[P==(%/.Thread[S->Table[Total[var^n],{n,4}]])]
True
Bob Hanlon
---- shubi at nusun.jinr.ru wrote:
> Dear All,
>
> Is the possibility in "Mathematica" express symmetric functions, for
> example:
>
> P=y1^2 y2 y3 + y1 y2^2 y3 + y1 y2 y3^2 + y1^2 y2 y4 +
> y1 y2^2 y4 + y1^2 y3 y4 + y2^2 y3 y4 + y1 y3^2 y4 +
> y2 y3^2 y4 + y1 y2 y4^2 + y1 y3 y4^2 + y2 y3 y4^2;
>
> by the standard symmetric polynomials:
> S1=y1+y2+y3+y4;
> S2=y1^2+y2^2+y3^2+y4^2;
> S3=y1^3+y2^3+y3^3+y4^3;
> . . .
>
> Best regards
> Nodar Shubitidze
> Joint Institute for Nuclear Research
> Dubna, Moscow region, Russia
>