Re: Interpolating data
- To: mathgroup at smc.vnet.net
- Subject: [mg64115] Re: Interpolating data
- From: "Valeri Astanoff" <astanoff at yahoo.fr>
- Date: Thu, 2 Feb 2006 00:05:01 -0500 (EST)
- References: <drpvo2$ml4$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
My method to gridify the data (not very orthodox ! ) : In[1]:= aaa = {{0, 3, -4.7202`}, {0, 7, 17.5902`}, {-20, 0, -0.418`}, {-10, 0, 17.3249`}, {0, 0, -9.9187`}, {5, 0, -46.7828`}, {17.5`, 0, -51.2055`}, {-15, 5, -5.1367`}, { 7.5`, 5, 17.2389`}, {-17.5`, 10, -4.0567`}, {-5, 10, 17.4435`}, {0, 10, 16.4173`}, {5, 10, 9.0035`}, {0, 12.5`, 9.4378`}, {0, 15, 15.1786`}, {0, 17.5`, 15.3475`}, {0, -2, -54.6795`}, {20, 0, 17.5902`}, {10, 0, 17.3249`}, {-5, 0, -9.9187`}}; In[2]:=xi=aaa[[All,1]]//Union Out[2]={-20,-17.5,-15,-10,-5,0,5,7.5,10,17.5,20} In[3]:=yi=aaa[[All,2]]//Union Out[3]={-2,0,3,5,7,10,12.5,15,17.5} In[4]:= near[x_,y_]:= (t= Rest/@ Take[Sort[{(x-#[[1]])^2+(y-#[[2]])^2, Sequence@@#}&/@aaa],3]; Fit[t,{1,u,v,u^2,v^2,u v},{u,v}]/.u\[Rule]x/.v\[Rule]y); In[5]:= bbb=Table[{x=xi[[i]],y=yi[[j]],near[x,y]}, {i,1,Length[xi]}, {j,1,Length[yi]}]//Flatten[#,1]&; In[6]:=f=Interpolation[bbb] Out[6]=InterpolatingFunction[{{-20.,20.},{-2.,17.5}},<>] In[7]:=f[0,3] Out[7]=-4.7202 In[8]:=f[0,5] Out[8]=4.23799 In[9]:=f[0,7] Out[9]=17.5902 hth v.a.