Matrix decomposition with NullSpace and QRDecomposit
- To: mathgroup at smc.vnet.net
- Subject: [mg64159] Matrix decomposition with NullSpace and QRDecomposit
- From: Tobias Burnus <burnus at gmx.de>
- Date: Thu, 2 Feb 2006 19:09:12 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Hello, I have a Hermitian matrix of the form ( A B ) ( B' C ) =: M (B' = Transpose[B]), of which I want to bring B (5=D718) into this form {D, O} = d11 d12 d13 d14 d15 0 0 0 0 0 0 0 0 0 0 0 0 0 d21 d22 d23 d24 d25 0 0 0 0 0 0 0 0 0 0 0 0 0 d31 d32 d33 d34 d35 0 0 0 0 0 0 0 0 0 0 0 0 0 d41 d42 d43 d44 d45 0 0 0 0 0 0 0 0 0 0 0 0 0 d51 d52 d53 d54 d55 0 0 0 0 0 0 0 0 0 0 0 0 0 where O should be zero. For a simple case I succeeded using Q = QRDecomposition[B] L = NullSpace[Transpose[B]], (see below) but it fails for a more complicated case - there not all (O)ij are zero. (See http://www.physik.fu-berlin.de/~tburnus/tmp/MatrixDecomposition.nb ) This is with Mathematica 5.2. It works if I set pds1=pds2=...=pds6 and pdp1=...pdp6. Any ideas? Besides, does anyone know a quick way to get D Hermitian, currently it has triangular form. Tobias Excerpt from the notebook -------- HC1 = (.... the matrix ...) HC1C := HC1[[Range[1, 5], Range[6, 23]]] Q = QRDecomposition[ Transpose[HC1C]][[1]] L = NullSpace[HC1C] T = IdentityMatrix[Length[HC1]]; T[[Range[6, 6 + Length[Q] - 1], Range[6, Length[HC1]]]] = Q; \!\(\(T\[LeftDoubleBracket]Range[6 + Length[Q], Length[HC1]], Range[6, Length[HC1]]\[RightDoubleBracket]\ = \ Table[L\[LeftDoubleBracket]i\[RightDoubleBracket]\/\@\(\(Conjugate[L]\)\ \[LeftDoubleBracket]i\[RightDoubleBracket] . L\[LeftDoubleBracket]i\ \[RightDoubleBracket]\), {i, 1, Length[L]}];\)\) T=Assuming[ pd\[Sigma]1<0&&pd\[Pi]1>0&&pd\[Sigma]2<0&&pd\[Pi]2>0&&pd\[Sigma]3<0&& pd\[Pi]3>0&&pd\[Sigma]4<0&&pd\[Pi]4>0&&pd\[Sigma]5<0&&pd\[Pi]5>0&& pd\[Sigma]6<0&&pd\[Pi]6>0,FullSimplify[T]]; myHC1 = T.HC1.Transpose[T] // FullSimplify (************** Content-type: application/mathematica ************** CreatedBy='Mathematica 5.2' Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 52461, 1250]*) (*NotebookOutlinePosition[ 53090, 1272]*) (* CellTagsIndexPosition[ 53046, 1268]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[ \($Version\)], "Input"], Cell[BoxData[ \("5.2 for Linux (June 20, 2005)"\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HC1", ":=", RowBox[{ RowBox[{"(", GridBox[{ {"\[Placeholder]", "\[Placeholder]", StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox["1", FontColor->RGBColor[0, 0, 1]], StyleBox["1", FontColor->RGBColor[0, 0, 1]], StyleBox["1", FontColor->RGBColor[0, 0, 1]], StyleBox["2", FontColor->RGBColor[0, 1, 0]], StyleBox["2", FontColor->RGBColor[0, 1, 0]], StyleBox["2", FontColor->RGBColor[0, 1, 0]], StyleBox["3", FontColor->RGBColor[0, 0, 1]], StyleBox["3", FontColor->RGBColor[0, 0, 1]], StyleBox["3", FontColor->RGBColor[0, 0, 1]], StyleBox["4", FontColor->RGBColor[0, 1, 0]], StyleBox["4", FontColor->RGBColor[0, 1, 0]], StyleBox["4", FontColor->RGBColor[0, 1, 0]], StyleBox["5", FontColor->RGBColor[0, 0, 1]], StyleBox["5", FontColor->RGBColor[0, 0, 1]], StyleBox["5", FontColor->RGBColor[0, 0, 1]], StyleBox["6", FontColor->RGBColor[0, 1, 0]], StyleBox["6", FontColor->RGBColor[0, 1, 0]], StyleBox["6", FontColor->RGBColor[0, 1, 0]]}, {"\[Placeholder]", "\[Placeholder]", StyleBox["xy", FontColor->RGBColor[1, 0, 0]], StyleBox["yz", FontColor->RGBColor[1, 0, 0]], StyleBox["zx", FontColor->RGBColor[1, 0, 0]], StyleBox[\(x\.b2 - y\.b2\), FontColor->RGBColor[1, 0, 0]], StyleBox["z\.b2", FontColor->RGBColor[1, 0, 0]], StyleBox["x", FontColor->RGBColor[0, 0, 1]], StyleBox["y", FontColor->RGBColor[0, 0, 1]], StyleBox["z", FontColor->RGBColor[0, 0, 1]], StyleBox["x", FontColor->RGBColor[0, 1, 0]], StyleBox["y", FontColor->RGBColor[0, 1, 0]], StyleBox["z", FontColor->RGBColor[0, 1, 0]], StyleBox["x", FontColor->RGBColor[0, 0, 1]], StyleBox["y", FontColor->RGBColor[0, 0, 1]], StyleBox["z", FontColor->RGBColor[0, 0, 1]], StyleBox["x", FontColor->RGBColor[0, 1, 0]], StyleBox["y", FontColor->RGBColor[0, 1, 0]], StyleBox["z", FontColor->RGBColor[0, 1, 0]], StyleBox["x", FontColor->RGBColor[0, 0, 1]], StyleBox["y", FontColor->RGBColor[0, 0, 1]], StyleBox["z", FontColor->RGBColor[0, 0, 1]], StyleBox["x", FontColor->RGBColor[0, 1, 0]], StyleBox["y", FontColor->RGBColor[0, 1, 0]], StyleBox["z", FontColor->RGBColor[0, 1, 0]]}, { StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox["xy", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], RowBox[{"-", StyleBox["pd\[Pi]1", FontColor->RGBColor[1, 0, 1]]}], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", "pd\[Pi]2", "0", StyleBox[\(-pd\[Pi]3\), FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "pd\[Pi]4", "0", "0", StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", "0", "0"}, { StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox["yz", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox[\(-pd\[Pi]3\), FontColor->RGBColor[1, 0, 1]], "0", "0", "pd\[Pi]4", StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["pd\[Pi]5", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", \(-pd\[Pi]6\), "0"}, { StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox["zx", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox[\(-pd\[Pi]1\), FontColor->RGBColor[1, 0, 1]], "0", "0", "pd\[Pi]2", StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", "0", "0", StyleBox["pd\[Pi]5", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], \(-pd\[Pi]6\), "0", "0"}, { StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox[\(x\.b2 - y\.b2\), FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox[ RowBox[{ RowBox[{"-", FractionBox[ StyleBox["1", FontColor->RGBColor[1, 0, 1]], "2"]}], \(\@3\), "pd\[Sigma]1"}], FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], \(\(1\/2\) \(\@3\) pd\[Sigma]2\), "0", "0", StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{ FractionBox[ StyleBox["1", FontColor->RGBColor[1, 0, 1]], "2"], \(\@3\), "pd\[Sigma]3"}], FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", \(\(-\(1\/2\)\) \(\@3\) pd\[Sigma]4\), "0", StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", "0", "0"}, { StyleBox["d", FontColor->RGBColor[1, 0, 0]], StyleBox["z\.b2", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox["0", FontColor->RGBColor[1, 0, 0]], StyleBox[\(\(1\/2\) pd\[Sigma]1\), FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], \(\(-\(1\/2\)\) pd\[Sigma]2\), "0", "0", StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox[\(\(1\/2\) pd\[Sigma]3\), FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", \(\(-\(1\/2\)\) pd\[Sigma]4\), "0", StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["pd\[Sigma]5", FontColor->RGBColor[1, 0, 1]], "0", "0", \(-pd\[Sigma]6\)}, { StyleBox["1", FontColor->RGBColor[0, 0, 1]], StyleBox["x", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{ RowBox[{"-", FractionBox[ StyleBox["1", FontColor->RGBColor[1, 0, 1]], "2"]}], \(\@3\), "pd\[Sigma]1"}], FontColor->RGBColor[1, 0, 1]], StyleBox[\(\(1\/2\) pd\[Sigma]1\), FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]]}, { StyleBox["1", FontColor->RGBColor[0, 0, 1]], StyleBox["y", FontColor->RGBColor[0, 0, 1]], StyleBox[\(-pd\[Pi]1\), FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]]}, { StyleBox["1", FontColor->RGBColor[0, 0, 1]], StyleBox["z", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox[\(-pd\[Pi]1\), FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]]}, { StyleBox["2", FontColor->RGBColor[0, 1, 0]], StyleBox["x", FontColor->RGBColor[0, 1, 0]], "0", "0", "0", \(\(1\/2\) \(\@3\) pd\[Sigma]2\), \(\(-\(1\/2\)\) pd\[Sigma]2\), StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0"}, { StyleBox["2", FontColor->RGBColor[0, 1, 0]], StyleBox["y", FontColor->RGBColor[0, 1, 0]], "pd\[Pi]2", "0", "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0"}, { StyleBox["2", FontColor->RGBColor[0, 1, 0]], StyleBox["z", FontColor->RGBColor[0, 1, 0]], "0", "0", "pd\[Pi]2", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0"}, { StyleBox["3", FontColor->RGBColor[0, 0, 1]], StyleBox["x", FontColor->RGBColor[0, 0, 1]], \(-pd\[Pi]3\), StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]]}, { StyleBox["3", FontColor->RGBColor[0, 0, 1]], StyleBox["y", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{ FractionBox[ StyleBox["1", FontColor->RGBColor[1, 0, 1]], "2"], \(\@3\), "pd\[Sigma]3"}], FontColor->RGBColor[1, 0, 1]], StyleBox[\(\(1\/2\) pd\[Sigma]3\), FontColor->RGBColor[1, 0, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]]}, { StyleBox["3", FontColor->RGBColor[0, 0, 1]], StyleBox["z", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox[\(-pd\[Pi]3\), FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]]}, { StyleBox["4", FontColor->RGBColor[0, 1, 0]], StyleBox["x", FontColor->RGBColor[0, 1, 0]], "pd\[Pi]4", "0", "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0"}, { StyleBox["4", FontColor->RGBColor[0, 1, 0]], StyleBox["y", FontColor->RGBColor[0, 1, 0]], "0", "0", "0", \(\(-\(1\/2\)\) \(\@3\) pd\[Sigma]4\), \(\(-\(1\/2\)\) pd\[Sigma]4\), StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0"}, { StyleBox["4", FontColor->RGBColor[0, 1, 0]], StyleBox["z", FontColor->RGBColor[0, 1, 0]], "0", "pd\[Pi]4", "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0"}, { StyleBox["5", FontColor->RGBColor[0, 0, 1]], StyleBox["x", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["pd\[Pi]5", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]]}, { StyleBox["5", FontColor->RGBColor[0, 0, 1]], StyleBox["y", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["pd\[Pi]5", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]]}, { StyleBox["5", FontColor->RGBColor[0, 0, 1]], StyleBox["z", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 1]], StyleBox["pd\[Sigma]5", FontColor->RGBColor[1, 0, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 0, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]]}, { StyleBox["6", FontColor->RGBColor[0, 1, 0]], StyleBox["x", FontColor->RGBColor[0, 1, 0]], "0", "0", \(-pd\[Pi]6\), "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", StyleBox["0", Background->None], StyleBox["0", Background->None], StyleBox["0", CellFrame->True, FontColor->RGBColor[0, 1, 1]], StyleBox["0", CellFrame->True, FontColor->RGBColor[0, 1, 1]], StyleBox["0", CellFrame->True, FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]]}, { StyleBox["6", FontColor->RGBColor[0, 1, 0]], StyleBox["y", FontColor->RGBColor[0, 1, 0]], "0", \(-pd\[Pi]6\), "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", StyleBox["0", Background->None], StyleBox["0", Background->None], StyleBox["0", CellFrame->True, FontColor->RGBColor[0, 1, 1]], StyleBox["0", CellFrame->True, FontColor->RGBColor[0, 1, 1]], StyleBox["0", CellFrame->True, FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]]}, { StyleBox["6", FontColor->RGBColor[0, 1, 0]], StyleBox["z", FontColor->RGBColor[0, 1, 0]], "0", "0", "0", "0", \(-pd\[Sigma]6\), StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", "0", "0", StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 1]], "0", StyleBox["0", Background->None], StyleBox["0", Background->None], StyleBox["0", CellFrame->True, FontColor->RGBColor[0, 1, 1]], StyleBox["0", CellFrame->True, FontColor->RGBColor[0, 1, 1]], StyleBox["0", CellFrame->True, FontColor->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]], StyleBox["0", FontColor->RGBColor[0, 1, 0]]} }, GridFrame->True, RowLines->True, ColumnLines->True], ")"}], "\[LeftDoubleBracket]", \(Range[3, 25], Range[3, 25]\), "\[RightDoubleBracket]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(General::"spell1"\), \(\(:\)\(\ \)\), "\<\"Possible spelling \ error: new symbol name \\\"\\!\\(pd\[Sigma]1\\)\\\" is similar to existing \ symbol \\\"\\!\\(pd\[Pi]1\\)\\\". \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \ ButtonData:>\\\"General::spell1\\\"]\\)\"\>"}]], "Message"], Cell[BoxData[ RowBox[{\(General::"spell1"\), \(\(:\)\(\ \)\), "\<\"Possible spelling \ error: new symbol name \\\"\\!\\(pd\[Sigma]2\\)\\\" is similar to existing \ symbol \\\"\\!\\(pd\[Pi]2\\)\\\". \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \ ButtonData:>\\\"General::spell1\\\"]\\)\"\>"}]], "Message"], Cell[BoxData[ RowBox[{\(General::"spell1"\), \(\(:\)\(\ \)\), "\<\"Possible spelling \ error: new symbol name \\\"\\!\\(pd\[Sigma]3\\)\\\" is similar to existing \ symbol \\\"\\!\\(pd\[Pi]3\\)\\\". \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \ ButtonData:>\\\"General::spell1\\\"]\\)\"\>"}]], "Message"], Cell[BoxData[ RowBox[{\(General::"stop"\), \(\(:\)\(\ \)\), "\<\"Further output of \ \\!\\(General :: \\\"spell1\\\"\\) will be suppressed during this \ calculation. \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \ ButtonData:>\\\"General::stop\\\"]\\)\"\>"}]], "Message"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ \(\(HC1C := HC1\[LeftDoubleBracket]Range[1, 5], Range[6, 23]\[RightDoubleBracket];\)\), "\n", \(\(HC1C2 := HC1\[LeftDoubleBracket]Range[6, 23], Range[1, 5]\[RightDoubleBracket];\)\)}], "Input"], Cell[BoxData[ RowBox[{\(General::"spell1"\), \(\(:\)\(\ \)\), "\<\"Possible spelling \ error: new symbol name \\\"\\!\\(HC1C\\)\\\" is similar to existing symbol \\\ \"\\!\\(HC1\\)\\\". \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", ButtonStyle->\ \\\"RefGuideLinkText\\\", ButtonFrame->None, \ ButtonData:>\\\"General::spell1\\\"]\\)\"\>"}]], "Message"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(HC1C - Transpose[HC1C2] // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"} }, RowSpacings->1, ColumnSpacings->1, ColumnAlignments->{Left}], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Q = \(QRDecomposition[ Transpose[HC1C]]\)\[LeftDoubleBracket]1\[RightDoubleBracket]; Length[Q]\)], "Input"], Cell[BoxData[ \(5\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(L = NullSpace[HC1C]; Length[L]\)], "Input"], Cell[BoxData[ \(13\)], "Output"] }, Open ]], Cell[BoxData[ \(\(T = IdentityMatrix[Length[HC1]];\)\)], "Input"], Cell[BoxData[ \(\(T\[LeftDoubleBracket]Range[6, 6 + Length[Q] - 1], Range[6, Length[HC1]]\[RightDoubleBracket] = Q;\)\)], "Input"], Cell[BoxData[ \(\(T\[LeftDoubleBracket]Range[6 + Length[Q], Length[HC1]], Range[6, Length[HC1]]\[RightDoubleBracket]\ = \ Table[L\[LeftDoubleBracket]i\[RightDoubleBracket]\/\@\(\(Conjugate[L]\ \)\[LeftDoubleBracket]i\[RightDoubleBracket] . L\[LeftDoubleBracket]i\ \[RightDoubleBracket]\), {i, 1, Length[L]}];\)\)], "Input"], Cell[BoxData[ \(\(T = Assuming[ pd\[Sigma]1 < 0 && pd\[Pi]1 > 0 && pd\[Sigma]2 < 0 && pd\[Pi]2 > 0 && pd\[Sigma]3 < 0 && pd\[Pi]3 > 0 && pd\[Sigma]4 < 0 && pd\[Pi]4 > 0 && pd\[Sigma]5 < 0 && pd\[Pi]5 > 0 && pd\[Sigma]6 < 0 && pd\[Pi]6 > 0, FullSimplify[T]];\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(myHC1 = T . HC1 . Transpose[T] // FullSimplify; myHC1 // MatrixForm\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0", "0", \(\@\(pd\[Pi]1\^2 + pd\[Pi]2\^2 + pd\[Pi]3\^2 + pd\[Pi]4\^2\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", \(\@\(pd\[Pi]3\^2 + pd\[Pi]4\^2 + pd\[Pi]5\^2 + pd\[Pi]6\^2\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", \(\@\(pd\[Pi]1\^2 + pd\[Pi]2\^2 + pd\[Pi]5\^2 + pd\[Pi]6\^2\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", \(1\/2\ \@3\ \@\(pd\[Sigma]1\^2 + pd\[Sigma]2\^2 + pd\ \[Sigma]3\^2 + pd\[Sigma]4\^2\)\), "0", "0", "0", "0", "0", "0", "0", "0", \(1\/2\ \@3\ pd\[Sigma]4\ \((\(-\(pd\[Sigma]3\/\@\(pd\ \[Sigma]3\^2 + pd\[Sigma]4\^2\)\)\) - 1\/\@\(1 + pd\[Sigma]4\^2\/pd\[Sigma]3\^2\))\)\), "0", "0", "0", "0", \(1\/2\ \@3\ pd\[Sigma]2\ \ \((pd\[Sigma]1\/\@\(pd\[Sigma]1\^2 + pd\[Sigma]2\^2\) + 1\/\@\(1 + pd\[Sigma]2\^2\/pd\[Sigma]1\^2\))\)\)}, {"0", "0", "0", "0", "0", "0", "0", "0", \(\(\(-pd\[Sigma]1\^2\) - pd\[Sigma]2\^2 + pd\[Sigma]3\^2 + pd\[Sigma]4\^2\)\/\(2\ \@\(pd\[Sigma]1\^2 + \ pd\[Sigma]2\^2 + pd\[Sigma]3\^2 + pd\[Sigma]4\^2\)\)\), \(\(\((pd\[Sigma]1\^2 \ + pd\[Sigma]2\^2)\)\ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\) + \((pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\)\ \@\(\(pd\[Sigma]1\^2 + \ pd\[Sigma]2\^2 + pd\[Sigma]3\^2 + pd\[Sigma]4\^2\)\/\(\((pd\[Sigma]3\^2 + pd\ \[Sigma]4\^2)\)\ \((pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\) + pd\[Sigma]1\^2\ \ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\) + pd\ \[Sigma]2\^2\ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + \ pd\[Sigma]6\^2)\)\)\)\ \@\(\((pd\[Sigma]1\^2 + pd\[Sigma]2\^2 + \ pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\)\ \((\((pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\)\ \ \((pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\) + pd\[Sigma]1\^2\ \((pd\[Sigma]3\^2 + \ pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\) + pd\[Sigma]2\^2\ \((pd\ \[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\))\)\)\)\/\@\ \(\((pd\[Sigma]1\^2 + pd\[Sigma]2\^2 + pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\)\ \ \((\((pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\)\ \((pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\ \) + pd\[Sigma]1\^2\ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + pd\ \[Sigma]6\^2)\) + pd\[Sigma]2\^2\ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\ \[Sigma]5\^2 + pd\[Sigma]6\^2)\))\)\)\), "0", "0", "0", "0", "0", "0", "0", \(\(-\(\(pd\[Sigma]3\ pd\[Sigma]4\)\/\(2\ \ \@\(pd\[Sigma]3\^2 + pd\[Sigma]4\^2\)\)\)\) - pd\[Sigma]4\/\(2\ \@\(1 + \ pd\[Sigma]4\^2\/pd\[Sigma]3\^2\)\)\), "0", "0", "0", "0", \(\(-\(\(pd\[Sigma]1\ pd\[Sigma]2\)\/\(2\ \ \@\(pd\[Sigma]1\^2 + pd\[Sigma]2\^2\)\)\)\) - pd\[Sigma]2\/\(2\ \@\(1 + \ pd\[Sigma]2\^2\/pd\[Sigma]1\^2\)\)\)}, {\(\@\(pd\[Pi]1\^2 + pd\[Pi]2\^2 + pd\[Pi]3\^2 + pd\[Pi]4\^2\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, { "0", \(\@\(pd\[Pi]3\^2 + pd\[Pi]4\^2 + pd\[Pi]5\^2 + pd\[Pi]6\^2\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", \(\@\(pd\[Pi]1\^2 + pd\[Pi]2\^2 + pd\[Pi]5\^2 + pd\[Pi]6\^2\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", \(1\/2\ \@3\ \@\(pd\[Sigma]1\^2 + pd\[Sigma]2\^2 + pd\ \[Sigma]3\^2 + pd\[Sigma]4\^2\)\), \(\(\(-pd\[Sigma]1\^2\) - pd\[Sigma]2\^2 + pd\[Sigma]3\^2 + pd\[Sigma]4\^2\)\/\(2\ \@\(pd\[Sigma]1\^2 + \ pd\[Sigma]2\^2 + pd\[Sigma]3\^2 + pd\[Sigma]4\^2\)\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", \(\(\((pd\[Sigma]1\^2 + pd\[Sigma]2\^2)\)\ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\) + \((pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\)\ \@\(\(pd\[Sigma]1\^2 + \ pd\[Sigma]2\^2 + pd\[Sigma]3\^2 + pd\[Sigma]4\^2\)\/\(\((pd\[Sigma]3\^2 + pd\ \[Sigma]4\^2)\)\ \((pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\) + pd\[Sigma]1\^2\ \ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\) + pd\ \[Sigma]2\^2\ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + \ pd\[Sigma]6\^2)\)\)\)\ \@\(\((pd\[Sigma]1\^2 + pd\[Sigma]2\^2 + \ pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\)\ \((\((pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\)\ \ \((pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\) + pd\[Sigma]1\^2\ \((pd\[Sigma]3\^2 + \ pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\) + pd\[Sigma]2\^2\ \((pd\ \[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\))\)\)\)\/\@\ \(\((pd\[Sigma]1\^2 + pd\[Sigma]2\^2 + pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\)\ \ \((\((pd\[Sigma]3\^2 + pd\[Sigma]4\^2)\)\ \((pd\[Sigma]5\^2 + pd\[Sigma]6\^2)\ \) + pd\[Sigma]1\^2\ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\[Sigma]5\^2 + pd\ \[Sigma]6\^2)\) + pd\[Sigma]2\^2\ \((pd\[Sigma]3\^2 + pd\[Sigma]4\^2 + pd\ \[Sigma]5\^2 + pd\[Sigma]6\^2)\))\)\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", \(1\/2\ \@3\ pd\[Sigma]4\ \((\(-\(pd\[Sigma]3\/\@\(pd\ \[Sigma]3\^2 + pd\[Sigma]4\^2\)\)\) - 1\/\@\(1 + pd\[Sigma]4\^2\/pd\[Sigma]3\^2\))\)\), \(\(-\(\ \(pd\[Sigma]3\ pd\[Sigma]4\)\/\(2\ \@\(pd\[Sigma]3\^2 + \ pd\[Sigma]4\^2\)\)\)\) - pd\[Sigma]4\/\(2\ \@\(1 + \ pd\[Sigma]4\^2\/pd\[Sigma]3\^2\)\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"}, {"0", "0", "0", \(1\/2\ \@3\ pd\[Sigma]2\ \ \((pd\[Sigma]1\/\@\(pd\[Sigma]1\^2 + pd\[Sigma]2\^2\) + 1\/\@\(1 + pd\[Sigma]2\^2\/pd\[Sigma]1\^2\))\)\), \(\(-\(\ \(pd\[Sigma]1\ pd\[Sigma]2\)\/\(2\ \@\(pd\[Sigma]1\^2 + \ pd\[Sigma]2\^2\)\)\)\) - pd\[Sigma]2\/\(2\ \@\(1 + \ pd\[Sigma]2\^2\/pd\[Sigma]1\^2\)\)\), "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"} }, RowSpacings->1, ColumnSpacings->1, ColumnAlignments->{Left}], "\[NoBreak]", ")"}], Function[ BoxForm`e$, MatrixForm[ BoxForm`e$]]]], "Output"] }, Open ]] }, FrontEndVersion->"5.2 for X", ScreenRectangle->{{0, 1400}, {0, 1050}}, WindowSize->{1392, 973}, WindowMargins->{{0, Automatic}, {Automatic, 0}} ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1776, 53, 41, 1, 27, "Input"], Cell[1820, 56, 65, 1, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[1922, 62, 37392, 922, 1279, "Input"], Cell[39317, 986, 367, 5, 20, "Message"], Cell[39687, 993, 367, 5, 20, "Message"], Cell[40057, 1000, 367, 5, 20, "Message"], Cell[40427, 1007, 333, 5, 20, "Message"] }, Open ]], Cell[CellGroupData[{ Cell[40797, 1017, 257, 6, 43, "Input"], Cell[41057, 1025, 355, 5, 20, "Message"] }, Open ]], Cell[CellGroupData[{ Cell[41449, 1035, 70, 1, 27, "Input"], Cell[41522, 1038, 865, 18, 112, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[42424, 1061, 142, 3, 27, "Input"], Cell[42569, 1066, 35, 1, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[42641, 1072, 63, 1, 27, "Input"], Cell[42707, 1075, 36, 1, 27, "Output"] }, Open ]], Cell[42758, 1079, 69, 1, 27, "Input"], Cell[42830, 1082, 145, 2, 27, "Input"], Cell[42978, 1086, 348, 5, 51, "Input"], Cell[43329, 1093, 334, 6, 27, "Input"], Cell[CellGroupData[{ Cell[43688, 1103, 105, 2, 27, "Input"], Cell[43796, 1107, 8649, 140, 712, "Output"] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)