Re: Trigonometric form of complex numbers
- To: mathgroup at smc.vnet.net
- Subject: [mg64196] Re: [mg64158] Trigonometric form of complex numbers
- From: Pratik Desai <pdesai1 at umbc.edu>
- Date: Sun, 5 Feb 2006 04:44:50 -0500 (EST)
- References: <200602030009.TAA10215@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
ivan.svaljek at gmail.com wrote: >Is there a way to force mathematica to output complex numbers in >trigonometric form (I guess you call it Phasor). >Can it return all 3 roots of a complex number in such a form ? > >Thanks. > > > Perhaps something like this (using Phasors) Clear[z,PolarForm] PolarForm[u_] := Module[{z=u,mod,arg},ToString[Abs[z]]<>"â? "<>ToString[ArcTan[Re[z],Im[z]]]<>"°"] ls = x /. Solve[x^3 == I, x]//N; PolarForm /@ ls Out[88]= {1.â? -1.5708°,1.â? 0.523599°,1.â? 2.61799°} Out[89]= {0.\[InvisibleSpace]-1. \[ImaginaryI],0.866025\[InvisibleSpace]+0.5 \ \[ImaginaryI],-0.866025+0.5 \[ImaginaryI]} I hacked some code from Andrzej :-) Hope this helps Pratik
- References:
- Trigonometric form of complex numbers
- From: ivan.svaljek@gmail.com
- Trigonometric form of complex numbers