Re: problem with numerical values in Solve/NSolve
- To: mathgroup at smc.vnet.net
- Subject: [mg63736] Re: problem with numerical values in Solve/NSolve
- From: Peter Pein <petsie at dordos.net>
- Date: Fri, 13 Jan 2006 04:48:13 -0500 (EST)
- References: <dq53td$abp$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hello Jacob,
you might want to try
NullSpace[m1]
-->
{{0.010011241314340086, 0.00003981968052280508, 0.9999485428023668,
0.0016386167927237756, 0.00001200703518667599}}
Peter
Jacob Grose schrieb:
> Hello,
>
> I writing a physics simulation and I need to solve a system of 41 equations. However, I am having problems even with a more simple 5x5 matrix. The problem is as follows: If I symbolically solve the matrix m1:
>
> \!\(\*
> TagBox[
> RowBox[{"(", "\[NoBreak]", GridBox[{
> {\(\(-a\) - b - c\), "0", "f", "h", "l"},
> {"0", \(\(-c\) - d - e\), "g", "k", "m"},
> {"a", "c", \(\(-f\) - g\), "0", "0"},
> {"b", "d", "0", \(\(-h\) - k\), "0"},
> {"c", "e", "0", "0", \(\(-l\) - m\)}
> }], "\[NoBreak]", ")"}],
> Function[ BoxForm`e$,
> MatrixForm[ BoxForm`e$]]]\)
>
> Using the code:
>
> variables = Array[p, 5];
> evec = Simplify[Solve[m1.variables \[Equal] Table[0, {i, 1, 5}], Array[p, 4]]]
>
> I get a result. However, if I try to solve for a matrix (m) of the same form but with values substituted for the variables:
>
> \!\(\*
> TagBox[
> RowBox[{"(", "\[NoBreak]", GridBox[{
> {\(-1.870413280501348`*^10\),
> "0", "1.7479373054791087`*^8", "
> 7.607967609656633`*^9", "2.5605854781972427`*^7"},
> {"0
> ", \(-1.2870235495030115`*^10\), "206293.3885126606`", \
> "8.754725514677356`*^7", "1.3554510956434595`*^10"},
> {"1.747937063721231`*^10", "2.062933885126606`*^7
> ", \(-1.7500002393642354`*^8\), "0", "0"},
> {"1.2247621677975328`*^9", "8.754722967399057`*^9", "0", \
> \(-7.695514864803407`*^9\), "0"},
> {"0.0036402209477187386`", "4.094883188779791`*^9", "0", "0", \
> \(-1.3580116811216568`*^10\)}
> }], "\[NoBreak]", ")"}],
> Function[ BoxForm`e$,
> MatrixForm[ BoxForm`e$]]]\)
>
> Using the same code:
>
> variables = Array[p, 5];
> evec = Simplify[Solve[m.variables \[Equal] Table[0, {i, 1, 5}], Array[p, 4]]]
>
> mathematica returns: {}.
>
> I tried using Nsolve instead of solve, as well as setting $MaxExtraPrecision = 5000, but it didn't help. Any ideas?
>
> Thanks,
> Jacob
>