Re: Iterated Function System
- To: mathgroup at smc.vnet.net
- Subject: [mg67706] Re: Iterated Function System
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Wed, 5 Jul 2006 04:17:59 -0400 (EDT)
- References: <e8d0uo$4dk$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Here's one that uises Mark McClure's "DigraphFractals`":
it calculates the dimension as well as the fractal for a Rauzy tile:
( I didn't change the base name" terdragonDigraph" that Dr. McClure used!)
Solve[x^3-x^2-x-1==0,x]
NSolve[x^3-x^2-x-1==0,x]
c=-0.419643377607080569
s=-0.606290729207199419
z=c+I*s
z^2
c1=-0.19148788395311880508967465797
s1=0.50885177883273803553625813551
z^3
c2=0.38886873843980076415946686483
s2=-0.09743895037446135435716873396
rotate[theta_] := {{Cos[theta], -Sin[theta]},
{Sin[theta], Cos[theta]}};
f = {{{c,-s},{s,c}},{c,s}};
g = {{{c1,-s1},{s1,c1}},{c1,s1}};
h = {{{c2,-s2},{s2,c2}},{c2,s2}};
Needs["DigraphFractals`"];
terdragonDigraph = {{{f, g, h}}}
ShowDigraphFractals[terdragonDigraph, 9];
ComputeDimension[terdragonDigraph]