Re: infinite product
- To: mathgroup at smc.vnet.net
- Subject: [mg65309] Re: infinite product
- From: Ronald Bruck <bruck at math.usc.edu>
- Date: Sat, 25 Mar 2006 05:17:45 -0500 (EST)
- References: <6334718.1143190534402.JavaMail.jakarta@nitrogen.mathforum.org> <240320060230425202%bruck@math.usc.edu> <20060324081024.411$gC@newsreader.com>
- Sender: owner-wri-mathgroup at wolfram.com
In article <20060324081024.411$gC at newsreader.com>, David W. Cantrell <DWCantrell at sigmaxi.org> wrote: > Ronald Bruck <bruck at math.usc.edu> wrote: > > In article > > <6334718.1143190534402.JavaMail.jakarta at nitrogen.mathforum.org>, eugene > > <jane1806 at mail.ru> wrote: > > > > > Could you please help me to calculate the following product > > > \prod_{n=2}^{\infty} (n^2-1)/(n^2+1). > > > > > > In the case \prod (n^3-1)/(n^3+1) we can easily cancel out the > > > multipliers in the numerator and denomonator and it can easily be > > > proved that the values in this case is 2/3. But i have no ideas to deal > > > with our case with squares. > > > > I wouldn't expect this to be anything simple, but I plugged it into > > Mathematica anyway. The result may be very interesting to fans of > > Mathematica: > > > > {(E^(LogGamma[2 - I] + LogGamma[2 + I])*Pi*Csch[Pi]* Gamma[1 + > > System`SeriesDump`k]^2)/ > > (20*Internal`ErdelyiBernoulliB[System`SeriesDump`k, 3 - I, 2 - > > I]*Internal`ErdelyiBernoulliB[ System`SeriesDump`k, 3 + I, 2 + I]* > > Gamma[(-2 - I) + System`SeriesDump`k]* Gamma[(-2 + I) + > > System`SeriesDump`k]), (E^((-2*I)*System`SeriesDump`k*Pi + LogGamma[2 > > - I] + LogGamma[2 + I])*Gamma[-2 - I]*Gamma[-2 + I]* Gamma[1 + > > System`SeriesDump`k]^2)/ > > (2*Internal`ErdelyiBernoulliB[System`SeriesDump`k, 3 - I, 2 - > > I]*Internal`ErdelyiBernoulliB[ System`SeriesDump`k, 3 + I, 2 + I]* > > Gamma[(-2 - I) + System`SeriesDump`k]* Gamma[(-2 + I) + > > System`SeriesDump`k]), (E^(LogGamma[2 - I] + LogGamma[2 + > > I])*Pi*Csch[Pi]* Gamma[1 + System`SeriesDump`k]^2)/ > > (20*Internal`ErdelyiBernoulliB[System`SeriesDump`k, 3 - I, 2 - > > I]*Internal`ErdelyiBernoulliB[ System`SeriesDump`k, 3 + I, 2 + I]* > > Gamma[(-2 - I) + System`SeriesDump`k]* Gamma[(-2 + I) + > > System`SeriesDump`k])} > > > > Question is, what are "System`SeriesDump`k" and "ErdelyiBernoulliB"? > > The former is clearly some sort of abort, and the latter an internal > > routine. > > > > The numerical value is approximately 0.272029. > > I've gotten garbage like that from Mathematica before too. But I don't in > this case, using version 5.1: > > In[1]:= FullSimplify[Product[(n^2 - 1)/(n^2 + 1), {n, 2, Infinity}]] > > Out[1]= Pi*Csch[Pi] > > which agrees with the answer derived earlier by Boudewijn. I wonder what > version of Mathematica you're using. OK, I've now tried Version 5.2 on three machines: two Mac OS X 10.4.5, and one Windows XP. All give the same result. So 5.2 is a slight "downgrade". I'll add a followup to comp.soft-sys.math.mathematica. -- Ron Bruck
- Follow-Ups:
- Re: Re: infinite product
- From: Devendra Kapadia <dkapadia@wolfram.com>
- Re: Re: infinite product