Re: Listing the partitions of a set
- To: mathgroup at smc.vnet.net
- Subject: [mg65319] Re: Listing the partitions of a set
- From: Peter Pein <petsie at dordos.net>
- Date: Sun, 26 Mar 2006 05:44:02 -0500 (EST)
- References: <e0022d$plp$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Richard Palmer schrieb: > Is there a simple way to list the partitions of a set? For example, there > are 15 partitions on a set of 4 elements. {{{1, 2, 3, 4}}, {1, {2, 3, 4}}, > {{1, 3, 4}, 2}, {{1, 2, 4}, 3}, {{1, 2, 3}, 4}, {{1, 2}, {3, 4}}, {{1, > 3}, {2, 4}}, {{1, 4}, {2, 3}}, {1, 2, {3, 4}}, {1, 3, {2, 4}}, {1, 4, {2, > 3}}, {2, 3, {1, 4}}, {2, 4, {1, 3}}, {3, 4, {1, 2}}, {1, 2, 3, 4}} . > > Yes, it is: In[1]:= <<DiscreteMath`Combinatorica` In[2]:= SetPartitions[{1,2,3,4}] Out[2]= {{{1,2,3,4}},{{1},{2,3,4}},{{1,2},{ 3,4}},{{1,3,4},{2}},{{1,2,3},{4}},{{1,4},{2,3}},{{1,2,4},{3}},{{ 1,3},{2,4}},{{1},{2},{3,4}},{{1},{2,3},{4}},{{1},{2, 4},{3}},{{1,2},{3},{4}},{{1,3},{2},{4}},{{1,4},{2},{3}},{{1},{2},{3},{4}}} In[3]:= %//Length Out[3]= 15