Re: Problem with Infinite products
- To: mathgroup at smc.vnet.net
- Subject: [mg65318] Re: Problem with Infinite products
- From: Roger Bagula <rlbagulatftn at yahoo.com>
- Date: Sun, 26 Mar 2006 05:44:01 -0500 (EST)
- References: <dvrbsp$a3a$1@smc.vnet.net> <e035oq$2d8$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Maxim Rytin, Actually does run better, still gives the wrong answers: Clear[f, zta] f[n_Integer?Positive, 1] := If[Mod[Prime[n], 12] - 1 == 0, Prime[n], 1/2] f[n_Integer?Positive, 2] := If[Mod[Prime[n], 12] - 5 == 0, Prime[n], 1/2] f[n_Integer?Positive, 3] := If[Mod[Prime[n], 12] - 7 == 0, Prime[n], 1/2] f[n_Integer?Positive, 4] := If[Mod[Prime[n], 12] - 11 == 0, Prime[n], 1/2] zta[x_, m_] := Module[{n}, Product[f[n, m]^(x)/(-1 + f[n, m]^(x)), {n, 1, Infinity}]] zta[2, 1] N[%] zta[2, 2] N[%] zta[2, 3] N[%] zta[2, 4] N[%] N[Product[zta[2, n], {n, 1, 4}]/Zeta[2]] Maxim wrote: > > zta[x_, m_] := Module[{n}, > Product[f[n, m]^(x)/(-1 + f[n, m]^(x)), {n, 1, Infinity}]] > > Then Product[zta[2, n], {n, 1, 4}] won't evaluate to zero. > > Maxim Rytin > m.r at inbox.ru >