Re: question about the inverse li function
- To: mathgroup at smc.vnet.net
- Subject: [mg65374] Re: [mg65348] question about the inverse li function
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Wed, 29 Mar 2006 06:34:13 -0500 (EST)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
invLogInteg[y_?NumericQ]:= x/.FindRoot[y==LogIntegral[x], {x,y,y+2}][[1]]; Plot[invLogInteg[y],{y,-1,6}, PlotRange->{{-1.1,6.1},{-0.4,10.2}}]; For comparison, Show[Plot[LogIntegral[x],{x,0,10}, DisplayFunction->Identity]/. {x_,y_}->{y,x}, PlotRange->{{-1.1,6.1},{-0.4,10.2}}, DisplayFunction->$DisplayFunction]; Symbolically, Off[InverseFunction::ifun]; Solve[y==LogIntegral[x],x] {{x -> InverseFunction[LogIntegral, 1, 1][y]}} InverseFunction[LogIntegral,1,1][LogIntegral[x]] x LogIntegral[InverseFunction[LogIntegral,1,1][x]] x Bob Hanlon > > From: "Capet Arthur" <Arthur.Capet at student.ulg.ac.be> To: mathgroup at smc.vnet.net > Subject: [mg65374] [mg65348] question about the inverse li function > > the question... > > i've measured C(x), wich is equal to li(I(x)), where li denotes the > logarithmic integral function. I would like to compute I(x)= li^(-1) > (C(x)) > > how can i compute the inverse of the logarithmic integral function ? > Is there a function Inverse[_function] ? > > thanx a lot > > > Arthur Capet, ULG, Belgium > > > >