simplify a trig expression
- To: mathgroup at smc.vnet.net
- Subject: [mg65415] simplify a trig expression
- From: Murray Eisenberg <murray at math.umass.edu>
- Date: Fri, 31 Mar 2006 06:09:08 -0500 (EST)
- Organization: Mathematics & Statistics, Univ. of Mass./Amherst
- Reply-to: murray at math.umass.edu
- Sender: owner-wri-mathgroup at wolfram.com
A direct substitution (with paper and pencil) gives that the integral of
Cos[x]/(Sin[x] + 1) is Log[Sin[x] + 1]. This is valid provided Sin[x]
is not -1.
Mathematica gives:
Integrate[Cos[x]/(Sin[x] + 1), x]
2 Log[Cos[x/2] + Sin[x/2]]
Is there some simple way to coerce the latter Mathematica-supplied
result into the paper-and-pencil answer?
The closest I could get is:
Log[TrigExpand[Expand[(Cos[x/2] + Sin[x/2])^2]]] /.
{Sin[x/2] -> Sqrt[(1 - Cos[x])/2],
Cos[x/2] -> Sqrt[(1 + Cos[x])/2]}
Log[1 + Sqrt[1 - Cos[x]]*Sqrt[1 + Cos[x]]]
Am I not seeing some easier TrigExpand or TrigReduce method?
--
Murray Eisenberg murray at math.umass.edu
Mathematics & Statistics Dept.
Lederle Graduate Research Tower phone 413 549-1020 (H)
University of Massachusetts 413 545-2859 (W)
710 North Pleasant Street fax 413 545-1801
Amherst, MA 01003-9305